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1 Introduction 
 
Seasonal climate forecast has shown the potential for providing useful information in decision 
making in large parts of the world (Weisheimer and Palmer 2014). However, over Europe, the 
skill of most seasonal forecast models in both summer and winter are more limited for most 
variables (Mishra et al. 2018). Moreover, the signal to noise ratio is often very low for the 
forecast (Scaife and Smith 2018). This also leads to small variance in the signal that can prove 
difficult to exploit in decision-making to the stakeholder. To develop and test different post-
processing tools for improving these aspects, and to help tailoring the forecasts for the 
stakeholder in the SECLI-FIRM project, several individual studies were carried out by the 
participating partners in task 2.2. The focus of these studies has been on three different, but 
related, topics: 
 

a. Multi model and multi model ensemble (MME) combinations for improved skill of both 
deterministic and probabilistic seasonal and monthly climate forecasts to address the 
needs of the stakeholders represented in some of the case study (CS) work carried out 
in WP3 (Section 2.1). In relation to this, a study of a developed metric to estimate the 
independency between probabilistic forecast from different systems has been 
performed (Section 2.2). This is intended to provide a prior knowledge about the optimal 
combination of models along with an explanation about the improvement that this 
combination presents over other combinations of less independent models.  

 
b. Tree-based regression system has been tested as statistical forecasting systems for 

seasonal and monthly forecasting of climatic variables to test their skill against the 
dynamical models in relation to CS5 (Section 2.3). In relation to this study the addition 
of a single dynamical models was added to develop a hybrid system building on the 
Random Forest algorithm. Further, a global assessment of the added value of these 
statistical systems relative to the dynamical forecasting models are tested for potential 
adoption in several of the CSs (Section 2.4). This was done in a multi model setup 
including statistical forecasting systems based on observations only and dynamical 
forecasting models available through the work carried out by Task 2.1. 

 
c. Two different approaches have been tested to boost seasonal forecast signals. The 

first method is building on a selection of the best performing ensemble members from 
an MME with respect to the North Atlantic Oscillation (NAO) in Section 2.5. The average 
of these is used to inflate the signal and achieve better predictions in relation to the root 
mean square error (RMSE) and Pearson correlation of specific variables against 
observations than using the prediction from the mean of all ensemble members from 
the MME.  
The second method focuses on boosting the mean of the predictions also by exploiting 
probabilistic aspects of the forecast and selecting a subset of ensemble members in 
cases when the forecast is confident (Section 2.6). The general assumption for this 
method is that if a forecast shows a likelihood greater than a predefined threshold of a 
specific event happening, such as warmer or colder than the climatic mean, then the 
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average of the ensemble is found only using the ensemble member that predicted this. 
This leads to an inflation of the signal that only depends on how certain the model is 
that an event will happen at a given time, and not on the actual skill of the model. This 
results in a boosting of the signal in both the case when the model predicts correct but 
as well when the prediction is wrong. However, an advantage with this method is that 
it can be performed without prior knowledge of the outcome of the forecast. This 
boosting approach was used in Case Studies 1-5 by ENEL, for which the main results 
are presented in Section 2.7.  

   
Additionally, in Section 2.8, a brief justification of the work delivered by Météo-France on the 
impact of North Atlantic Weather Regimes in the downscaling process. Despite relying on 
large-scale climate phenomena and teleconnections, due to its major strength of this approach 
being the use of weather regimes, Météo-France work presented a better fit to Task 2.3 and 
is therefore described in detail in deliverable D2.3. 
 
In general, the methods presented showed different amount of success in improving the 
tailored seasonal forecasts usability for the stakeholders in regard to improving the skill or 
boosting the signal. Although not all the results presented here have been directly adopted by 
the SECLI-FIRM case studies during the project execution, the industry users have been 
involved in presentations and discussions of this work and in some cases they plan to test 
these procedures after the project. Of those adopted, results from the multi-model combination 
and independence metric (sections 2.1 and 2.2), as well as the signal boosting method using 
a simple threshold (section 2.6 and 2.7), have been used in the implementation of ENEL’s 
case studies 1 to 5.  
 
As part of Task 2.2 other lines of research were pursued but due to their non-conclusive results, 
also due to the resignation of a team member, these results are not documented in this report. 
This is the case for instance on the research on the teleconnection between the Monsoon-
Desert Mechanism and its related prediction signal over Euro-Mediterranean. Initial 
investigations using the ECMWF SEAS5 were summarised with the first interim report (pp 30-
31). While this research had a strong potential in terms of providing a predictive signal for the 
Mediterranean region with about a month horizon, priority was given to other more focused 
uses of seasonal forecasts, in the context of the SECLI-FIRM case studies, as discussed in 
this report. 
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2 Developed methodologies 

2.1 Estimation of the added skill of the optimal multi model combination 
All dynamical weather and climate forecast systems are bound to have uncertainties due to 
their parametrization of physical processes as well as inaccuracies in their methods of solving 
some physical processes (Lee et al. 2013). This combined with uncertainties in observed and 
analysed initial conditions and the chaotic nature of weather and to some degree, seasonal 
climate variations tend to lead to inaccuracy.  
 
To account for this, combining the ensembles from the independent skilful seasonal forecast 
systems into a multi model ensemble (MME) has proven to be a reliable method to improve 
the skill of these forecasts (Palmer et al. 2005). The reason is that the widening of the 
ensemble spread achieved by including different models helps mitigate the overconfidence of 
individual forecast systems. Furthermore, error cancellation between models may also help in 
minimising the error of the mean of the MME compared with the individual models.  
 
This however raises the question: Do all models always provide the best forecast with the 
highest skill or are there specific model combinations that provide a more significant 
improvement? In this work, we aimed to test all individual combinations and thereby estimate 
the potential improvement in skill between using the best combination compared to that of all 
models together as well as individually. This was done for both specific forecasts related to 
case studies in WP3, as well as for larger, more general areas. The variables chosen for 
investigation was 2-metre temperature and total precipitation.   
 

2.1.1 Methodology  
A similar approach as the one by Alessandri et al. 2018 was chosen to evaluate the potential 
of an optimal combination of models to improve the skill compared to utilizing all models 
available. This was done by calculating the skill of all combinations to find the most skilful 
combination. All the forecasts are seasonal, and the focus has been on DJF and JJA 
forecasted from November and May with a lead time of one month.  
 
Two main skill scores have been chosen for the analysis of the combination, the anomaly 
correlation coefficient (ACC), and the Brier skill score (BSS). These were chosen to account 
for both deterministic and probabilistic approaches used in different case studies and therefore 
different skill scores were needed to test the combinations. The ACC is widely used to assess 
the quality of seasonal forecasts when utilizing the mean of a model ensemble. Here we are 
using it to evaluate the quality of the ensemble mean from the models for each combination. 
In its simplest form, the formula for calculating the ACC is written out in equation 2.1.1. 
 

𝐴𝐶𝐶 = 	
(𝑓 − 𝑐)(𝑜 − 𝑐)+++++++++++++++++++

,(𝑓 − 𝑐)!	++++++++++++	(𝑜 − 𝑐)!+++++++++++	
 (Eq. 2.1.1) 
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Where f is the forecasted value of the variable, c is the climatic mean of the month being 
forecasted and o is the observed value of the variable.  
 
The Brier Skill Score allows estimating the improvement of the accuracy of a probabilistic 
forecast against a reference forecast. It is defined in equation 2.1.2 as 

𝐵𝑆𝑆	 = 1 −	
𝐵𝑆"#$.
𝐵𝑆$&".	

	. (Eq. 2.1.2) 

 
Where the Brier Score for the forecast (BSfor.) and for the reference forecast system which the 
forecast is tested against (BSref.) are calculated following equation 2.1.3 
 

𝐵𝑆 = 	
1
	𝑁2(𝑓' − 𝑜')!

(

')*

 

 

(Eq. 2.1.3) 

Where N is the number of ensemble members, ft is the predicted probability at time t from the 
forecast that an event will happen and ot is the observation of whether the event happened. 
Following this, ot takes values of 0 or 1 (0 if the event was not observed and 1 if the event was 
observed). This is similar to the mean squared error for deterministic evaluations, however, 
following Murphys (1973) decomposition of the metric, it was shown that it includes both 
reliability, resolution and uncertainty of the forecast. Therefore, it is widely used as a general 
evaluation of the skill of probabilistic seasonal climate forecasts.  
 
For this probabilistic forecast, the events chosen for investigation are the lower and upper 
terciles for both precipitation and temperature. These variables are of interest to many of the 
end-users and play and significant role for both energy demand and for some specific cases 
such as case study 3 (CS3) and CS5 for energy production potentials. It would have been 
interesting to test even more extreme events; however, the limited number of available years 
for analysis limits how extreme an event can be investigated. To quantify if a cold/dry event 
(observation under the threshold for the lower tercile) or warm/wet event (observations larger 
than the threshold for the upper tercile) occurred, the seasonal terciles are determined from 
the climatic distribution of the average of the 3 months under investigation using the 
observational information from ERA5. For each model, the tercile thresholds are determined 
compared to the climatic distribution of the models forecast with a lead time of one month. This 
ensures that even with biases in the mean or variance of the forecast, the predicted probability 
for these specific events to occur from the models are comparable with the observations from 
ERA5.  
 
The likelihood of an event happening is evaluated as the number of ensemble members 
predicting it divided by the total number of ensemble members chosen. To ensure an equal 
and fair estimation of skill, 10 ensemble members of each model are used, as this is the 
number of members available from the model with the smallest ensemble.  
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The combination of the forecast systems has been done giving equal weight to each system 
in this study, this allowed to create a general method that could be tested by different case 
studies and used for a case-by-case tailored choice of models for an MME.  
 
The areas chosen for investigation, and illustrated in Figure 2.1.1, are East-Europe (35-70 oN, 
15-40 oE), West-Europe (38-55 oN, 10 oW-18 oE), Mediterranean (35-47 oN, 10 oW-35 oE), Italy 
(35-47 oN, 7-18 oE) Spain (35-44 oN, 10 oW-3 oE) and Colombia (6 oS-15 oN, 83-65 oW). These 
regions provide larger geographical areas for more statistically significant testing and still cover 
many of the case studies.  
 

 
Figure 2.1.1: Geographical illustration of the domains chosen. Colombia (orange shaded), Spain 
(shaded yellow), West-Europe (shaded blue), Italy (shaded green), Mediterranean (shaded teal) and 
East-Europe (shaded purple)   

 
The score for each season is calculated by finding the score for each combination at each 
point and then averaging this over all the grid points within the area of interest. In this study, 
we are focusing on land points only. This is defined by the land see mask from ERA5, only 
using grid points with values larger than zero.   
 

2.1.2 Data used 
From all the hindcast datasets retrieved in the project, a specific selection of independent 
models was chosen. This meant that different versions of the same models are left out and as 
a main rule only the newest version is used. This allows for faster computation times and 
ensures that the versions of the models tested are also available for future incorporation into 
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the end user's decision processes. The hindcast period covers the start data of all months from 
1993-2016 covering a period of 24 years. All models are retrieved at a 1ox1o regular lat/lon 
grid. For calculating the probabilistic score of a combination 10 ensemble members were 
selected from each model to ensure a fair weighting between the models. The final selection 
of 11 different models is shown in table 2.1.1.  
 
Table 2.1.1: Overview of the 11 different models chosen. 

Model 
acronym 

System 
name  

Atmos. 
model 

Ocean 
model  

Members 
(hindcast/
forecast) 

Initializat
ion 
Atmos.  

Initialization 
Ocean 
hind/forecast 

CANI CanCM4i CanAM4 CanOM4 10/10 CMC 
ORAP5 
ocean 
reanalysis 

CCSM 
COLA-
RSMAS-
CCSM4 

CAM4 CCSM 
POP2 10/10 CFSR OISST 

CMCC CMCC-
SPS3.5 

CESM 1.2 - 
CAM 5.3 NEMO v3.4 40/50  ERA5 

C-GLORS 
Global Ocean 
3D-VAR 

DWD GCFS 
2.1 

ECHAM 
6.3.05 

MPIOM 
1.6.3 30/50 ERA5 ORAS5 

ECMWF SEAS5 IFS Cycle 43r1 NEMO v3.4 25/51 ERA-
Interim ORAS5 

GEMN GEM-
NEMO 

GEM 4.8-
LTS.13, 

NEMO 3.6 
ORCA 10/10 ERA-

interim  
ORAP5 
ocean 
reanalysis/ 

GFDL SPEAR AM 4.0  MOMv6 15/30 CFSR OISST v2 

JMA JMA/MRI
-CPS2 JMA-GSM MRI.COM 

v3 
10/13 
 JRA-55 MOVE/MRI.C

OM-G2 

MF  System 
6 ARPEGE v6.2 NEMO v3.4 25/71 ERA-

interim  

GLORYS2V2 
/ Mercator-
Ocean 

NCEP CFSv2 GFS GFDL 
MOM4 24/120  CFSR CFSR 

UKMO GloSea5
-GC2-LI 

 Unified Model 
(UM) - Global 
Atmosphere 
6.0 

NEMO v3.4 
- Global 
Ocean 5.0 

28/60  ERA-
Interim 

GS-OSIA / 
FOAM  

 
ERA5 was used as the observational information to assess the skill of the MME as well as the 
single model forecast. This was retrieved from Copernicus Data Store (CDS) at a 1x1 regular 
lat/lon grid to fit with the resolution of the models. The benchmark forecast for the BSS was 
chosen as climatology, meaning there is a 1/3 chance of exceeding the tercile for the given 
event.  
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2.1.3 Results - Deterministic 
The focus of some of the case studies have been on a tailored deterministic forecast for 
precipitation, therefore the MME combination method is tested using the ACC for the areas 
relating to CS3 and CS5 (specific catchment areas of ENEL and Celsia in Italy and Colombia 
respectively, see D3.3 and D3.6). Figure 2.1.2 illustrates the testing of combinations for a 
deterministic forecast of temperature over areas of interest to ENEL in Italy. The forecast is 
monthly with a lead of one month. The correlation for each combination was therefore found 
between 288 months of forecast and observations (Feb 1993 to Jan 2017). 
 

 
Figure 2.1.2: Results of the MME combinations method for a deterministic forecast of temperature over 
areas of interest to ENEL in Italy. Grey dots represent the score from each combination. Red 
triangles represent the cases in which the combinations are obtained with only models from the 
European community, while blue triangles are for the combinations of the non-European models only. 
The combinations mixing models from both the European, the NMME and the JMA communities are the 
grey dots without marking.  

For this case, the best combination had an R-value of 0.42 and the r-value for all models were 
0.40 with the specific improvement of 0.023. To test if this improvement is significant a 
bootstrap method was used as a statistical test of significance. All 110 ensemble members 
from the 11 models are collected in a pot. Then as the best combination consisted of 7 models, 
70 ensemble members are randomly picked, while allowing replacement from the pot 
containing all members. The correlation between the average of these and the observations is 
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found. Similar 110 members are selected randomly, while allowing replacement, and the 
correlation between the average of these and the observations is found. Finally, the difference 
between these two correlation coefficients is found. This procedure is repeated 10.000 times 
to form a distribution. From this distribution, the confidence intervals were found. The left plot 
in Figure 2.1.3 shows the distribution of the correlation between the mean of the randomly 
sampled ensembles and observations. Furthermore, the distribution of the differences between 
the correlation coefficients is shown in the right plot of Figure 2.1.3. This leads to the conclusion 
the improvement in ACC of the best combination over using all models in this case only is 
statistically significant to the 80% significant level (Table 2.1.2).  
 

   
Figure 2.1.3: Output of the statistical testing of significance for the forecast of temperature relating to 
CS3. Left plot: Distribution of the ACC for the 70 (blue bins) and 110 (green bins) randomly sampled 
ensemble members with repetition from the full pot of all possible members. Right plot: Distribution of 
difference between the ACC for the  

 
Table 2.1.2: Confidence intervals for the statistical testing of significance of the forecast of temperature 
relating to CS3. 

Confidence 
interval 60% 70% 80% 90% 95% 99% 

minimum -0.034 -0.040 -0.046 -0.055 -0.063 -0.081 

maximum 0.0009 0.015 0.021 0.030 0.038 0.054 

 
For CS5 a test of a monthly forecast with one month lead time of temperature over the 4 grid 
points covering Bogota (75-74 oW, 4-5 oN) was carried out as it is assumed that temperature 
is a driving factor of energy consumption in the city. It is shown that there is in general a higher 
skill of the forecast as temperature anomalies in this area are strongly linked to the El Niño /La 
Niña phenomena as illustrated in Figure 2.1.4.     
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Figure 2.1.4: Same as Figure 2.1.3 but for the domain covering Bogota. 

 
The significance test of this area showed that there is a significant improvement of 0.039 by 
using the best model combination with a correlation coefficient value of 0.80 compared to that 
of all models with a correlation coefficient of 0.76 with a 95% certainty as the uncertainty range 
for this confidence level covers –0.034 to 0.027 see Table 2.1.3. 
 
Table 2.1.3: Same as Table 2.1.2 but for the domain covering Bogota. 

Confidence 
interval 60% 70% 80% 90% 95% 99% 

minimum -0.016 -0.019 -0.023 -0.029 -0.034 -0.044 

maximum 0.010 0.013 0.017 0.022 0.027 0.036 
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This indicates that there is a benefit in using the best combination of models for this specific 
area and variable in relation to ACC for the forecast of the average of the ensemble members 
compared to using all the tested models as a combined full MME.  
 

2.1.4 General results and conclusions for probabilistic forecast over European 
domains.  

 
The results of the larger domains can be seen in Table 2.1.4 where for each seasonal forecast 
covering DJF and JJA with a lead time of 1 month the BSS for the best single model, overall 
best combination and the combination of all models is reported. The predicted variables were 
TP and TA for the upper and lower terciles.  
 
 
Table 2.1.4: Summary of the results of the testing of the MME method for temperature over the selected 
domains with respect to the BBS of the seasonal forecast of winter (DJF) and summer (JJA) season. 
The scores are noted for the Best individual model, the combination of all models and the best 
combination overall. The number of models in the best combinations is shown in parentheses and 
significant improvements are indicated with bold.  

JJA 2m Temperature lower tercile DJF 2m Temperature lower tercile 
 
 

Best 
individual 

All 
models 

Best 
combination 
(nr. mod) 

 
 

Best 
individual 

All 
models 

Best 
combination 
(nr. mod) 

Colombia 0.42 0.36 0.46 (3) Colombia 0.39 0.34 0.4 (4) 
EastEU 0.15 0.19 0.21 (5) EastEU 0.16 0.15 0.2 (4) 
Italy 0.17 0.2 0.24 (3) Italy 0.08 0.09 0.13 (3) 
MediEU 0.17 0.22 0.23 (5) MediEU 0.11 0.9 0.13 (4) 
Spain 0.15 0.14 0.18 (4) Spain 0.14 0.11 0.16 (2) 
WestEU 0.08 0.11 0.13 (7) WestEU 0.14 0.1 0.16 (6) 

JJA 2m Temperature upper tercile DJF 2m Temperature upper tercile 
 
 

Best 
individual 

All 
models 

Best 
combination 
(nr. mod) 

 
 

Best 
individua 

All 
models 

Best 
combination 
(nr. mod) 

Colombia 0.28 0.29 0.37 (3) Colombia 0.46 0.5 0.51 (6) 
EastEU 0.1 0.16 0.18 (6) EastEU 0.17 0.17 0.2 (3) 
Italy 0.17 0.17 0.25 (3) Italy 0.15 0.16 0.21 (4) 
MediEU 0.16 0.2 0.23 (6) MediEU 0.13 0.15 0.17 (5) 
Spain 0.15 0.14 0.17 (3) Spain 0.17 0.16 0.21 (4) 
WestEU 0.14 0.09 0.14* (1) WestEU 0.14 0.15 0.17 (5) 
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Table 2.1.5: Same as table 2.1.4 for precipitation. 

JJA Precipitation lower tercile DJF Precipitation lower tercile 

 
 

Best 
individual 

All 
models 

Best 
combination 
(nr. mod) 

 
 

Best 
individual 

All 
models 

Best 
combination 
(nr. mod) 

Colombia 0.15 0.2 0.24 (3) Colombia 0.23 0.26 0.29 (3) 
EastEU 0.06 0.11 0.12 (7) EastEU 0.09 0.12 0.14 (3) 
Italy 0.06 0.09 0.11 (4) Italy 0.09 0.13 0.14 (5) 
MediEU 0.05 0.12 0.13 (6) MediEU 0.10 0.13 0.15 (6) 
Spain 0.11 0.16 0.18 (4) Spain 0.17 0.17 0.22 (3) 
WestEU 0.05 0.09 0.11 (5) WestEU 0.1 0.13 0.15 (5) 

JJA Precipitation upper tercile DJF Precipitation upper tercile 

 
 

Best 
individual 

All 
models 

Best 
combination 
(nr. mod) 

 
 

Best 
individual 

All 
models 

Best 
combination 
(nr. mod) 

Colombia 0.14 0.21 0.23 (4) Colombia 0.22 0.25 0.28 (5) 
EastEU 0.06 0.12 0.12 (7) EastEU 0.08 0.12 0.13 (5) 
Italy 0.08 0.1 0.13 (3) Italy 0.1 0.12 0.14 (5) 
MediEU 0.08 0.13 0.14 (7) MediEU 0.09 0.13 0.14 (7) 
Spain 0.1 0.16 0.17 (5) Spain 0.16 0.16 0.18 (4) 
WestEU 0.04 0.11 0.12 (7) WestEU 0.08 0.11 0.14 (4) 

 
 
From these results (Tables 2.1.4 and 2.1.5) it can be seen that often (≈63% of the time) there 
is a combination of models that is significantly more skilful than the combination utilizing all 
models. Furthermore, this seems to occur more often for more skilful forecasts of temperature 
(≈79% of the time) than the less skilful forecasts of precipitation (≈46% of the time).  
 
Having this knowledge allows users to not only have a slight increase in forecast skill, but also 
a smaller number of models needed to achieve the optimal combination, decreasing the work 
related to gathering the data and working with them. This can be seen as an additional benefit 
of doing this prior selection of the optimum forecast models.  
 
However, a case-by-case estimation is still needed to ensure that there is a benefit from using 
the ensemble from the best combination instead of the full ensemble from all available models. 
This testing for case-specific areas also reveal that in some less frequent cases for these 
tested domains a decrease in skill by using all available models with equal weight over the 
single most skill full model is observed. An example of this can be seen for a forecast of DJF 
temperatures in the lower tercile in the Colombian domain, see Figure 2.1.5. 
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Figure 2.1.5: Results of the MME method tested for a seasonal forecast for DJF with a lead time of one 
month for temperature in the lower tercile over the Colombian domain. Grey dots represent the score 
from each combination. Red triangles represent the cases in which the combinations are obtained with 
only models from the European community, while blue triangles are for the combinations of the non-
European models only. The combinations mixing models from both the European, the NMME and the 
JMA communities are the grey dots without marking.  

 
But for the forecast of TP in JJA in Spain the opposite is basically true as almost all 
combinations of models perform better concerning the BSS than any single model as illustrated 
in Figure 2.1.6. 
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Figure 2.1.6: Results of the MME method tested for a seasonal forecast for JJA with a lead time of one 
month for precipitation rates in the upper tercile over the Spain domain. Grey dots represent the score 
from each combination. Red triangles represent the cases in which the combinations are obtained with 
only models from the European community, while blue triangles are for the combinations of the non-
European models only. The combinations mixing models from both the European, the NMME and the 
JMA communities are the grey dots without marking.  

 
 
These examples further underline the significant differences in the process of improving the 
skill from MME combinations regarding the geographical area of the domain, the variable, the 
season, and the general skill of the individual forecast models. It is therefore a priori hard to 
suggest any selection of models for an optimal combination. It has been proven in an earlier 
study by Allesandri et al. 2017 that combining more independent models with different physical 
representations of atmospheric and ocean processes results in a higher skill. Therefore, being 
able to evaluate the independence between different models could provide a priori knowledge 
of what models would perform best when combined with each other as opposed to taking all 
the available models. Such a metric has been developed and tested utilizing results from this 
analysis in SECLI-FIRM and is described under section 2.2.  
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2.2 Importance of probabilistic independence for MME combination 
optimization 

Multi-model ensembles (MMEs) are powerful tools in dynamical climate prediction as they 
account for the overconfidence and the uncertainties related to single model ensembles. The 
potential benefit that can be expected by using an MME amplifies with the increase of the 
independence of the contributing seasonal prediction systems (Alessandri et al., 2018). To this 
aim, we have collected and analysed prediction systems from the Copernicus C3S seasonal 
forecasts product (https://climate.copernicus.eu/seasonal-forecasts), the North American 
Multi-Model Ensemble and the Japan Meteorological Agency (Table 2.2.1) (see D2.1). 
 
One-month lead retrospective seasonal predictions are collected for the considered models 
for the period 1993-2017 (1st May and 1st November start dates, i.e., June-July-August, JJA 
and December-January-February, DJF). The validation period is limited to 2014 for the 
analysis involving surface albedo due to the availability of satellite observations of GLCF-
GLASS data (Liu et al., 2013). On the other hand, ERA5 reanalysis (Hersbach et al., 2018) is 
the reference dataset for all the other surface climate variables considered. We analysed the 
seasonal hindcasts in terms of deterministic scores (anomaly correlations and its 
decomposition in yearly normalized covariance) and probabilistic score (Brier Skill score) with 
a particular focus on land domain, since little evaluation has been performed so far over land 
domains that is where a large number of applications of seasonal forecasts are based. New 
metrics are developed in order to assess the relative independence of the prediction systems 
in the probabilistic information they provide. The multi-models get their performance from the 
skill of the contributing models, so that MME skill is generally proportional to the mean skill of 
the individual models. However, the relation between single-model averages and MME skill is 
not linear and the multi-model performance is superior to the average of the single-model 
ensembles mainly because of error cancellations. The independence of the contributing 
models between each other is a prerequisite to obtain error cancellations and for skill 
amplification to occur (Hagedorn et al., 2005). 

2.2.1 Process-based model inter-comparison 
In order to show how different models contribute to MME performance, the deterministic skill 
(anomaly correlations, ACC) of a subset of models from C3S (ECMWF, Météo-France and 
DWD) has been compared together with associated possible predictability sources. 
 
Overall, the ECMWF prediction of T2M in DJF is outperforming the MF prediction over East 
Europe and Central Asia while the Météo-France predictions tend to be better over East US 
and West Europe (Figure 2.2.1a). There is a pronounced negative skill difference for winter 
(DJF) surface temperature in parts of the North Atlantic in the ECMWF model with respect to 
Météo-France. Over that region there is a known problem in the ECMWF system related to the 
ocean initialization with Ocean Reanalysis System 5 (ORAS5, Johnson et al., 2019). The 
affected region is centred on a box defined by the longitudes 50-30 °W and the latitudes 45-
55 °N and it can potentially affect forecasts over Europe through advection by the prevailing 
westerly winds. Indeed, the comparison of ACC shows that the 1-month lead forecasts 
initialized 1st November tend to have less skill in predicting 2m temperature over West Europe. 
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Surface temperature prediction in the winter season is strongly related to the representation of 
snow-albedo processes while surface solar radiation variability is affected by both local surface 
conditions (evapotranspiration) and the atmospheric dynamics through moisture convergence 
(Alessandri et al., 2017). To investigate the coupling and the possible predictability sources, 
the relationships between the improvement of the correlation for the target variables (e.g. 2 m-
temperature and surface solar radiation) is analysed with respect to the improvements in the 
possible drivers for the areas of interest (e.g. surface albedo, moisture convergence). For this 
purpose the correlation coefficient is decomposed in its components measuring the covariance 
between each predicted (x) and observed (y) yearly (i) anomalies [𝑟(𝑥, 𝑦)! hereinafter 
normalized yearly covariance,], following the approach in Alessandri et al. (2017). The model 
1 minus model 2 difference in the normalized yearly covariance [∆𝑟(𝑥, 𝑦)!] is analyzed to 
identify the possible driver contributor to the enhanced predictability of the target variables 
resulting from the different model and/or initialization strategies. To this aim, the linear relation 
between ∆𝑟(𝑥, 𝑦)! of the target and driver fields is assessed using a least square method and 
significance of the slope of linear relationship is evaluated using a Fisher parametric test. The 
positive linear relationship between target and driver in terms of the model 1-minus-model 2 
∆𝑟(𝑥, 𝑦)! indicates the change of predictability of the target as mediated by the driver, which is 
directly affected by the differences in the two prediction systems. Only the linear coefficients 
of the regression that passed significance test at 10% level are considered. The analysis 
revealed a strong local coupling of the increased skill in 2m temperature, over East Europe 
coming from the snow processes represented by surface albedo (Figure 2.2.1b). Positive 
(negative) values of normalized yearly covariance differences mean better (worse) skill in 
system 1 with respect to system 2 in predicting the driver and target variables. Indeed, the fact 
that most of the years occur in the upper right quadrant indicates that increases in the 
prediction of surface albedo also drives enhancement of T2M forecasts. 
 
The same analysis has been applied to compare ECMWF and DWD systems (Figure 2.2.2a). 
There are large differences between the two models, in particular over continental areas. Here 
the DWD model performs better over the Iberian Peninsula, West Europe, and most of Asia 
(except for India, Indonesia, and Japan), while the ECMWF model shows better correlations 
over Canada, South America, and Africa. The ECMWF model, in turn, gives better predictions 
over Canada, Indian monsoon region and Sahel. The two models share the same ocean 
initialization strategy (ORAS5) and therefore do not show significant differences over the North 
Atlantic. The normalized yearly covariance differences scatterplot (Figure 2.2.2b) shows, again 
for the East EU domain, that the skill difference of 2m temperature is consistently related to 
the ability of the model to represent land surface albedo processes. 
 
The comparison of ECMWF vs Météo-France for 1-month lead seasonal hindcasts for boreal 
summer (June-July-August, JJA) surface solar radiation (Figure 2.2.3a) shows that the 
ECMWF model is performing better over North America, East Europe, and Central Asia while 
Météo-France is giving larger skill over Central Europe, North Africa, China, and East Asia. 
Interestingly, there are still some negative differences over the North Atlantic similarly to DJF. 
The analysis revealed the influence of the atmospheric dynamics on the skill via a significant 
relation between surface solar radiation normalized yearly covariances to moisture 
convergence over Central Europe domain (Figure 2.2.3b). 



REPORT    D2.3 
 

REPORT    D2.2 
 

The role of large-scale climate phenomena and 
teleconnections on the predictability 

 
 
 

 
 
 

19 of 80 
 

 

Figure 2.2.1. a) 1-month-lead boreal winter (DJF) 2m temperature ECMWF minus Météo-France 
correlation difference vs. ERA5. Dotted grid points did not pass significance test at 10 % level. b) 
Scatterplot of the normalized yearly covariance differences between ECMWF and Météo-France for the 
predictions averaged over the East-European domain (15E–40E; 35N–70N) of T2M versus albedo. 
Black filled circles are the normalized yearly covariance differences computed for each start date. 
Regression line indicates significant (10 % level) relationship between prediction of target T2M and 
driver albedo. Orange years indicate when normalized yearly covariance difference change in the same 
direction (i.e. both target and driver lying in the lower/upper terciles of their respective distribution). 

 
The differences between ECMWF and DWD systems for surface solar radiation in JJA are 
shown in Figure 2.2.4a. ECMWF gives better predictions over Central Europe, Central Asia, 
the Amazon, Sahel, and Central Africa while DWD is better over North America, East Russia, 
and North Africa. Over Central Europe there is still a strong relationship between surface solar 
radiation and moisture convergence (Figure 2.2.4b) but in this case the influence of the 
moisture convergence on the surface solar radiation appears to be better represented in the 
ECMWF than in DWD system. 
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Figure 2.2.2. a) 1-month-lead boreal winter (DJF) 2m temperature ECMWF minus DWD correlation 
difference vs. ERA5. Dotted grid points did not pass significance test at 10 % level. b) Scatterplot of the 
normalized yearly covariance differences between ECMWF and DWD for the predictions averaged over 
the East-European domain (15 oE–40 oE; 35 oN–70 oN) of T2M versus albedo. Black filled circles are 
the normalized yearly covariance differences computed for each start date. Regression line indicates 
significant (10 % level) relationship between prediction of target T2M and driver albedo. Orange years 
indicate when normalized yearly covariance difference change in the same direction (i.e. both target and 
driver lying in the lower/upper terciles of their respective distribution). 
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Figure 2.2.3. a) 1-month-lead boreal summer (JJA) surface solar radiation downward ECMWF minus 
Météo-France correlation difference vs. ERA5. Dotted grid points did not pass significance test at 10 % 
level. b) Scatterplot of the normalized yearly covariance differences between ECMWF and Météo-
France for the predictions averaged over the Central-European domain (0 oE–16 oE; 45 oN–50 oN) of 
SSRD versus moisture convergence. Black filled circles are the normalized yearly covariance 
differences computed for each start date. Regression line indicates significant (10 % level) relationship 
between prediction of target SSRD and driver -Qdiv. Orange years indicate when normalized yearly 
covariance difference change in the same direction (i.e. both target and driver lying in the lower/upper 
terciles of their respective distribution). 
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Figure 2.2.4. a) 1-month-lead boreal summer (JJA) surface solar radiation downward ECMWF minus 
DWD correlation difference vs. ERA5. Dotted grid points did not pass significance test at 10 % level. b) 
Scatterplot of the normalized yearly covariance differences between ECMWF and DWD for the 
predictions averaged over the Central-European domain (0 oE–16 oE; 45 oN–50 oN) of SSRD versus 
moisture convergence. Black filled circles are the normalized yearly covariance differences computed 
for each start date. Regression line indicates significant (10 % level) relationship between prediction of 
target SSRD and driver -Qdiv. Orange years indicate when normalized yearly covariance difference 
change in the same direction (i.e. both target and driver lying in the lower/upper terciles of their 
respective distribution). 

 

2.2.2 Probabilistic scores and model independence 
 
The probabilistic accuracy has been analysed in terms of Brier Skill score (BSS) for 
dichotomous events of conditions being above (below) upper (lower) tercile of the sample 
distribution. Furthermore, starting from the definition of the Brier score (Equation 2.1.3; Wilks, 
2011), we have developed the Brier score covariance (BScov; Equation 2.2.1) metric (see also 
S2S4E D4.4), which estimates the relative independence of prediction systems 1 and 2: 

 

(Eq. 2.2.1) 
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where i indicates each hindcast year and 𝑛 total number of years; 𝑦 is forecast probability and 
𝑜 is for the observed [0, 1] dichotomous event under consideration. Subscripts (1) and (2) in 
Equation 2.2.1 indicate system 1 and 2, respectively. The aim of the new metric is to provide 
quantitative information on the relative independence of the prediction systems and therefore 
guidance on the best combination strategies for the selection of the models contributing to the 
MME. BScov is equal to 1 when the two systems are the same (system1 = system 2) and its 
value decreases with increasing model independence. Due to the fact that, by definition, BScov 
considers both inter-model distance and distance with respect to observations, the values tend 
to be concentrated towards its upper limit. 
 
 
For this part of the analysis, we focused on the European domain. Results for 2m temperature 
BSS for the lower tercile in DJF are mostly consistent with the analysis of the deterministic 
scores. The larger positive skill differences between ECMWF and Météo-France are 
concentrated over East Europe and in general at the higher latitudes while Météo-France 
system is performing better over the Iberian Peninsula and the Mediterranean countries 
(Figure 2.2.5a). The comparison of ECMWF with DWD confirms the better performance of the 
latter system over continental areas and in particular on the Eastern part of the domain (Figure 
2.2.5b). The BScov metric has been used to assess the relative independence of the selected 
models in the probabilistic information they provide (Figure 2.2.5c and d). For both 
combinations, the larger probabilistic independence (lower BScov values) is over the ocean, 
indicating that model or initialization differences in this component play a major role that must 
be considered in MME model selection. Over land, the three systems show larger 
independence over East EU, suggesting that the representation of the snow-albedo processes 
and the land-surface initialization in the different systems, as discussed in previous section, 
are important factors to consider for model combination. Interestingly, both for land and the 
ocean, some regions with small or non-significant skill differences are characterized by large 
independence (the Mediterranean Sea and Central Europe). 
 
As shown in Figure 2.2.6, models characterized by large relative independence in 2 m 
temperature (Figure 2.2.6a) also display large independence in surface albedo (Figure 2.2.6b) 
which has been identified in the analysis above as an important driver for temperature 
prediction in boreal winter over the East-EU region. This indicates that, in particular for this 
region, differences in land-surface processes representation (here snow/albedo) are highly 
contributing to model independence. Furthermore, here we see that adding a model from the 
NMME community (NCEP) to the European MME ensemble adds a large contribution in terms 
of model independence. 
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Figure 2.2.5. Spatial distribution of the BSS differences of the probabilistic forecasts for below-normal 
(below lower tercile of sample distribution) 2m temperature in Boreal winter (DJF) for Europe domain. 
(a) ECMWF minus Météo-France; (b) ECMWF minus DWD; dotted are the areas that passed a 
significance test at the 10% level. Probabilistic independence as measured by the new BScov metric: 
(c) ECMWF vs Météo-France; (d) ECMWF vs DWD. 

 

Figure 2.2.6. Probabilistic independence measured by the new BScov metric for East-EU region (35-70 
°N; 15-40 °E) for (a) 2m temperature and (b) surface albedo for boreal winter (DJF). Only the models 
available in Copernicus C3S are considered since albedo is not available for the other NMME models 
at present time. 

 
 
Figure 2.2.7 shows the probabilistic scores for the lower tercile of the distribution for surface 
solar radiation in JJA. In terms of skill, the ECMWF system is performing slightly better than 
Météo-France over land at the higher latitudes while the latter model is outperforming over 
Central Europe (Figure 2.2.7a), consistently with the deterministic analysis in previous section. 
Comparison of ECMWF vs DWD (Figure 2.2.7b) shows positive skill differences over Central 
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and North France, Western part of Germany, South Italy, and Greece, while the DWD model 
has higher BSS over Spain, South France, North Italy, and Romania. In terms of model 
independence (Figure 2.2.7c and d), again we see a large contribution of the ocean 
component. The fact that ECMWF and Météo-France share the same ocean model but have 
different ocean initialization strategies suggests that the impact of ocean initialization can be 
even larger than the differences in the ocean model itself in terms of systems independence. 
Over land, large signal comes from Central and East Europe for both the model combinations. 
Again, large degree of independence is also present over regions which are not characterized 
by significant skill differences. This supports the added value given by this new metric if 
included in the process of selection and combination of the contributing prediction systems in 
the MME. 

Figure 2.2.7. Spatial distribution of the BSS differences of the probabilistic forecasts for below-normal 
(below lower tercile of sample distribution) surface solar radiation downward in Boreal summer (JJA) for 
Europe domain. (a) ECMWF minus Météo-France; (b) ECMWF minus DWD; dotted are the areas that 
passed a significance test at the 10% level. Probabilistic independence as measured by the new BScov 
metric: (c) ECMWF vs Météo-France; (d) ECMWF vs DWD. 

 

2.2.3 Optimization of the MME combination 
In order to assess the maximum level of skill that is currently attainable for seasonal 
predictions, we have combined the seasonal prediction systems independently developed by 
the European (ECMWF, CMCC, UKMO, DWD, Météo-France), the North American Multi-
Model Ensemble (GEM, CAN, CCSM, GFDL, NCEP) communities, plus the JMA system from 
the Japan Meteorological Agency into a grandMME consisting of 11 systems. To this aim, all 
the possible MME combinations have been evaluated by putting together the different systems 
using equal weights for each model. Figure 2.2.8 shows the BSS averaged over the East-EU 
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(35-70 °N; 15-40 °E) region for 2 m temperature in DJF as a function of the number of models 
and obtained with all the possible combinations of the models available. Red triangles 
represent the cases in which the combinations are obtained with only models from the 
European community, while blue triangles are for the combinations of the non-European 
models only. The combinations mixing models from both the European, the NMME and the 
JMA communities are the grey circles. The maximum performance (yellow dashed line) 
obtained by mixing models from the European and non-European communities considerably 
improves what would be obtained by European models only (red dashed line) or by non-
European models only (blue dashed line). Figure 2.2.9 shows the relative independence of all 
the seasonal prediction systems. The best combination identified in Figure 2.2.8 (CMCC, 
DWD, UKMO, NCEP) corresponds in Figure 2.2.9 to models with high degree of independence 
from each other. 
 
 
 

 
Figure 2.2.8. East-EU (35-70N; 15-40E) Brier Skill Score for boreal winter (DJF) 2 m temperature 
computed as a function of the number of models obtained with all the possible combinations. Red 
triangles represent the cases in which the combinations are obtained with only models from the 
European community, while blue triangles are for the combinations of the non-European models only. 
The combinations mixing models from both the European, the NMME and the JMA communities are the 
grey circles 
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Figure 2.2.9. Probabilistic independence for all the seasonal prediction systems measured by the new 
BScov metric for East-EU region (35-70 oN; 15-40 oE) for 2m temperature for boreal winter (DJF). 

 

2.2.4 Conclusions 
One of the main results of this work, summarised with Figure 2.2.10, is that the skill of the MME 
combinations increases with increasing degree of independence of the contributing models. 
 
We have developed a methodology to optimize the selection of seasonal forecast models using 
the MME. The added value of using independence information is the possibility to reduce the 
number of models and data to produce the optimized forecasts. The methodology developed 
is general and can be applied for all the variables, seasons, and regions of interest for the 
energy industry partners. 
 
Two scientific papers are in preparations describing the methodology for the optimization of 
the MME combination by using model independence information (Alessandri et al. [in 
preparation], Catalano et al. [in preparation]). 
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Figure 2.2.10. Scatterplot of the skill vs the average probabilistic independence (larger values of BScov 
indicate less independence) among the models for all the possible combinations of 5 models for East-
EU region (35-70N; 15-40E) for 2m temperature for boreal summer (JJA). 
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2.3 Random Forest method to enhance the signal of a seasonal forecast system 
This work is developed for the industrial user of Case Study 5, Celsia (second component of 
the CS5). We aim to improve the dam water level predictions currently made by Celsia, which 
rely on past observations, by adding seasonal forecast information. We explore the use of 
various methods combining past observations, seasonal predictions and a combination of the 
two.  
 
The novelty of this work is the use the random forest algorithm (Breiman 2001) to improve the 
prediction of a variable, the dam water state, based on climatic indices and past observations 
of the dam. This method creates non-linear relationships between the predictors and 
predictand (dam state) by fitting various classifying decision trees on randomized subsets of 
the dataset to define the various parameters of the tree (maximum depth of the tree, minimum 
number of samples required to be at a leaf node, etc.). Once the characteristics of the tree are 
defined, we have a division of the phase space of the predictors defined by the different 
branches of your tree. Predictions are then performed by averaging the predictand of 
neighbouring points in phase space of the predictors.  
 
We present a description of the data used (2.3.1), the various methods of prediction used with 
the goal of improving Celsia’s predictions (2.3.2) and the results of the predictions (2.3.3). As 
the predictions that Celsia provided are only between November 2016 and August 2020, we 
considered two periods for testing our methods: one being 1993-2016 to understand the long-
term ability to predictions when various phases of El Niño/La Niña are considered, and a 
second one, November 2016-August 2020, when we have available Celsia’s predictions for 
comparison but no strong El Niño/La Niña events occur.  

2.3.1 Data used  
The monthly dam data provided by Celsia ranges from 1947 until 2020 depending on the site. 
Five sites were provided: Salvajina, Dígua, Anchicaya, Prado and Calima. Anomalies are 
computed with respect to the climatological period 1993-2016 coinciding with the period of the 
seasonal forecast data.  
 
All the climate indices used in this study are described in Table 2.3.1, as well as a relationship 
of their provenance and references. We have considered indices based on the sea surface 
temperature (SST), atmosphere (ATM) and sea ice extension (SI). The climatology is taken as 
the average between 1993 and 2016 (both years included) and all of time series of climate 
indices are computed as anomalies with respect to this climatology. 
 
Predictors are computed using data from various sources. These mainly come from climate 
indices, previous dam states and predictions from the seasonal prediction system. For past 
observations we use the last 10 months of the indices shown in Table 2.3.1. We considered 
10 months to allow the model to select potential teleconnections that develop within these time 
scales i.e. Atlantic-Pacific (Polo et al. 2015 or Rodríguez-Fonseca et al. 2009). For 
observational dam data, we relied on observations of the last 3 months and some statistics of 
these values (mean and trend). Finally, for the predictions of the seasonal forecast system we 
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computed with lead times of 1 to 5 months the climate indices indicated with * in Table 2.3.1. 
Additionally, indices marked with ** in Table 2.3.1 are also computed for the seasonal forecast 
system but with different definitions from the historical time series. The Atlantic Multidecadal 
Oscillation (AMO) is taken as the spatial average in the Atlantic between (0,70)oN and the 
Pacific Decadal Oscillation (PDO) has been computed as the spatial average (30, 50)oN, (-
180, -140)oE. The last two indices in Table 2.3.1, local precipitation, and wind speed, are 
computed only with the Seasonal prediction system data. These indices are computed taking 
the spatial average of the grid points within a plus/minus 0.5o from the latitude and longitude 
of the dam location.  
 
Table 2.3.1 – description of the climate indices used as predictors 

Index Component Origin 
El Niño 1+2 * Ocean Index from HadISST [-10, 5]oN - [-90, -80]oE 

El Niño 3 * Ocean Index from HadISST [-5, 5]oN - [-150, -90]oE 
El Niño 3.4 * Ocean Index from HadISST [-5, 5]oN - [-170, -120]oE 
El Niño 4 * Ocean Index from HadISST [-5, 5]oN - [150, -160]oE 

El Niño Modoki * Ocean 

Index from HadISST A – 0.5*(B+C) with  
A = [-10, 10]oN - [140, -165]oE,  

B = [-15, 5]oN - [-110, -70]oE and  
C = [-10, 20]oN - [125, 145]oE 

Tropical North Atlantic (TNA) * Ocean Index from HadISST [0, 15]oN - [-80, 0]oE 
Atlantic Niño (AN) * Ocean Index from HadISST [-3, 3]oN - [-40, -20]oE 

Atlantic interhemispheric SST * Ocean 
Index from HadISST A – B with  

A = [0, 15]oN - [-80, 0]oE and  
B = [-15, 0]oN - [-80, 0]oE 

Indian Ocean Dipole (IOD) * Ocean 
Index from HadISST A – B with  
A = [-10, 0]oN - [90, 110]oE and  

B = [-10, 10]oN – [50, 70]oE 
Atlantic Multidecadal Oscillation 

(AMO) ** Ocean NOAA: https://psl.noaa.gov/data/timeseries/AMO 

Pacific decadal oscillation (PDO) 
** Ocean NOAA: https://psl.noaa.gov/pdo  

Arctic Oscillation (AO) Atmosphere NOAA: https://www.ncdc.noaa.gov/teleconnections/ao 
Pacific-North American index 

(PNA) Atmosphere NOAA: https://www.ncdc.noaa.gov/teleconnections/pna 

North Atlantic Oscillation (NAO) * Atmosphere NOAA: https://www.ncdc.noaa.gov/teleconnections/nao 

Southern Oscillation Index (SOI) * Atmosphere 
NOAA: 

https://www.ncdc.noaa.gov/teleconnections/enso/indicat
ors/soi 

Arctic Sea Ice extent Sea ice NSIDC: https://nsidc.org/data/G02135/versions/3 
Antarctic Sea Ice extent Sea ice NSIDC: https://nsidc.org/data/G02135/versions/3  

Local Precipitation Atmosphere 
Seasonal prediction systems. Computed as the average 

of (- 0.5,+0.5) for latitude and longitude of the dam 
location 

Local wind speed Atmosphere 
Seasonal prediction systems. Computed as the average 

of (- 0.5,+0.5) for latitude and longitude of the dam 
location 
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The seasonal prediction data have been taken for this study from the European Centre for 
Medium-Range Weather Forecasts System 5 (Johnson et al. 2019). We have considered only 
the ensemble mean of the 25 or 51 members (depending on the date) for each of the time 
series considered.  

2.3.2 Methodologies 
This work is posed in the way it would be delivered to the end user of Case Study 5. Which 
means that the goal is to predict the next 1-to-5 months from a particular month using available 
data up to the previous month (from climate and dam data) and seasonal predictions of next 
1-to-5 months. We assumed that the state of current month for both climate and dam is not yet 
known.  
 
The set-up is depicted in Figure 2.3.1, indicating the span of months for each set of available 
data that the algorithm uses as predictors: last 10 months for observational climate indices, 
last 3 months for dam data and predicted indices from the seasonal forecast models at the 
required lead for the prediction of the dam. 
 
Under these assumptions, we have a set of predictors and a time series to be predicted, the 
state of the dam with lead 1-to-5 months, which are the input for our random forest model. Due 
to the variety of time span of the available data, we developed various models combining the 
possible data. The models are described in Table 2.3.2 with all the predictors (covariates) used 
in each of the models and time availability of the data. We have used the random forest 
algorithm with five models combining past climate indices from different sources (SST only - 
ObsOnly (SST), SST and atmospheric indices - ObsOnly (SST+ATM) and all indices ObsOnly 
(All)), indices from seasonal prediction system (SeasPred) and a combination of the two data 
sources (Obs+SeasPred). We considered also a method predicting the dam state with a linear 
regression algorithm using as predictor the local precipitation from seasonal predictions of 
each site. Finally, we included also an algorithm used traditionally by energy providers based 
on past similar situations or analogs (Analogs, later described). 
 

 
Figure 2.3.1 – Schematic of the time-dependency of the variables used for prediction. 
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In general, for all the models there is a general structure of the algorithm. This structure follows 
the steps indicated next: 

1. Obtain all required data as predictor and store them in a table 
2. Loop for each of the dates that I want to predict: 

a. Create the training data by removing conflicting dates (as the examples explained 
before) 

b. Train the model with the training data 
c. Obtain a reduction of the predictors (Only for the Random Forest model) 
d. Re-train the model with the selected predictors (Only for the Random Forest model) 
e. Predict with the model the date that we want to predict.  

 
Table 2.3.2 – description of the various models developed 

Model Name Short name 
Past 

observations 
Predictors 

Seasonal 
System 

Predictors 
Available dates 

Analog Analog Dam data  As available dam 
data 

Ordinary 
Least squares OLS  Precipitation 

only From 1993 

Only SST 
indices ObsOnly (SST) SST indices + 

Dam data  From 1900 or as 
dam data 

SST+ATM 
indices 

ObsOnly (SST + 
ATM) 

SST indices + 
ATM indices + 

Dam data 
 From 1960 or as 

dam data 

All indices 
(SST+ATM+SI) ObsOnly (All) 

SST indices + 
ATM indices + SI 

indices + Dam 
data 

 From 1980 or as 
dam data 

Seasonal 
Prediction 

mean 
SeasPred Dam data SST indices + 

ATM indices From 1993 

Past 
observations 
and Seasonal 

Prediction 
mean 

Obs+SeasPred 
SST indices + 

ATM indices + SI 
indices + Dam 

data 

SST indices + 
ATM indices From 1993 

 
Random Forest 
The availability of the data used as predictor defines the number of data points from which the 
random forest can be trained. With less training points the model will not perform well, as not 
enough branches will be defined by the algorithm. In the case of including the seasonal 
prediction data as predictors, we can only consider data to train the model from 1993. Limiting 
our training set with about 300 datapoints, which is not so much regarding than in some cases 
the number of predictors can reach up to 200 in the case of the model including both past 
observations and seasonal prediction indices (Obs+SeasPred). In order to take advantage of 
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most of the available data to be used as predictor we combined on the one hand the use of 
the Boruta_py algorithm (Kursa et al. 2010) which is described later. On the other hand, we 
followed two different strategies: 

i. Leave-one-out – in which we predicted dates between January of 1993 until December 
of 2016 (both included). We consider as training dataset all the available dates that do 
not have any information of the current month that we are doing the prediction. For 
example, if we are predicting January 2000 with lead 3 (with the goal of predicting April 
of 2000) we would exclude from the dataset the current date and also the data points 
of February, March, and April of 2000 as the dam state of January is used as predictor 
for these dates. And also, October 1999 as the dam state is January 2000 is the value 
we are trying to predict.  

ii. “Real-time” Predictions – in this case we predicted between January of 2017 until 
December 2019 by considering as training data all the available data up to the date  we 
launch the prediction. We don’t use data that has not been yet observed. For example, 
to predict January 2020 with lead 3 we only consider as training data until September 
2019. As all the later dates contain dam states after the date we are trying to predict.  

 
As it can be seen on step 2.c, we perform a reduction of predictors, as the number of predictors 
in some cases tend to be very large and we may overfit the model. For this we used the 
package Boruta_py which searches for features yielding the largest prediction skill. To give an 
illustration, if we consider the prediction of one of the sites, Salvajina, for lead 1 and experiment 
Obs+SeasPred (all observational data and Seasonal prediction indices as predictors), we have 
initially a total of 266 predictors considered. Although this is a very large number, current work 
is invested in reducing the number of initial predictors at the starting point. When the Boruta 
algorithm is used, the 266 predictors are reduced in the whole period of 1993-2016 to a mean 
of 41 covariates. In order to describe a bit further the distribution of these values: the 5th and 
95th quantiles are 15 and almost 59, and the maximum and minimum number of covariates are 
9 and 88. Hence the reduction of covariates used in the prediction reduces quite drastically in 
this method, reducing the chances of model overfitting.  
 
Ordinary Least squares 
This method consists of a standard Linear regression method (Ordinary Linear Regression, 
OLS) in which the covariate is the predicted precipitation in the region with lead 1-to-5 months 
(depending on the lead predicted), which is fitted to the state of the dam with lead 1-to-5 
months. This approach is done monthly, which means that for January 2000 with lead 3, we fit 
the OLS of all available Aprils in the dam dataset with the precipitation predictions with lead 3 
of the seasonal prediction system. Once the model is fitted, we predict April 2000.  
 
Analog 
This model takes advantage of the extensive record of dam observations provided by Celsia. 
It assumes that the present state of the dam will evolve in a similar manner to past situations. 
Hence, it provides as predictor of the dam evolution, the past evolution of the dam state starting 
in the closest month from which we start our prediction. For example, if we are predicting in 
January 2000 with lead 3, with the target of predicting April of 2000, the algorithm will look in 
the records for the December with the closest value to the last observed month, December 
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1999. Assuming the closest value is dated in December of 1978, we will follow the evolution 
of the dam during the winter 1978-1979 to obtain the targeted month of April of 1979. The 
value obtained in April 1979 will be used as our prediction of January 2000 with lead 3.  
 
Prediction accuracy metrics 
Three metrics considered to assess the goodness of the prediction over the period are R2, 
Pearson correlation (R) and Root Mean Square Error (RMSE). The former metric, chosen 
initially, is complemented with the Pearson correlation to homogenize the validation of the 
results with other methods developed for Case Study 5. The latter metric is computed as 
percentage of the standard deviation of the observational anomalies of the dam. 
 

2.3.3 Results 
Leave-one-out Predictions 
The performance of this algorithm is tested in the five sites provided by Celsia, although we 
focused initially in Salvajina. The resultant predictions for lead one (Figure 2.3.2) show as best 
models SeasPred, Obs+SeasPred and ObsOnly (All). The former two methods are expected 
to perform generally better, as they contain future predictions of climate indices from the 
seasonal prediction system, allowing the random forest to capture better the relationship of 
these indices with the dam state predicted. The model ObsOnly (All) is also ranked almost at 
the top of these models for lead 1, reflecting the ability of the random forest to capture 
relationships based on past observations. Nonetheless, as shown in Figure 2.3.3 these 
predictions decrease accuracy for increasing lead. From the poll of models, both Analog and 
OLS are the ones with worst performance in this approach, providing errors of the order of 
magnitude of one standard deviation and higher.  
 

 
Figure 2.3.2 – Results of the predictions for all the models at Salvajina and lead of 1 month. The black 
line indicates the observations and the grey line the ENSO index. Horizontal lines indicate the strength 
of the ENSO index for periods of El Niño or La Niña.  

 
When considering all the leads from 1-to-5, the results of the leave-one-out approach between 
1993-2016 show as the best approaches Obs+SeasPred and SeasPred (Figure 2.3.3). Their 
RMSE of 78 and 76% of the standard deviation of the anomalies (solid lines in Figure 2.3.3), 
R2 values for all the leads have a mean of 0.42 and 0.39 (dashed lines in Figure 2.3.3), and 
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correlation coefficients of 0.64 and 0.62 (dotted lines in Figure 2.3.3). These values are very 
similar for all the leads in the two models, with Obs+SeasPred having a higher spread in the 
scores. The performance of all the models using only past observations is very limited, 
decreasing as we increase the lead. In average the three models reduce their R2 and R by 
68% and 36% respectively and increase the RMSE by a 17%. Both OLS and Analog method 
provide poor prediction skill compared to all the other models.  
 

 
Figure 2.3.3 – Scores of the predictions at Salvajina for all the leads (colours) and all the methods (x-
axis). RMSE as percentage of the standard deviation of the anomalies of the observations (solid lines).  
R2 coefficient (dashed lines) and Pearson correlation coefficient (dotted lines). 

 
The scores of the other four sites (Figure 2.3.4) depict a reduction of the prediction skill for all 
the methods. The methods performing better are still SeasPred and Obs+SeasPred, but the 
mean with respect to all the leads of their skills are reduced to values between 0.13-0.26 for 
the R2, 0.38-0.51 for the correlation (Pearson correlation), and RMSE between 83-92% of the 
respective STD of each site anomalies. The rest of the methods underperform corresponding 
to the previous ones. As with Salvajina, the method based on all available past observations, 
ObsOnly (All), provides also improved prediction skills when compared to the climatology for 
low leads, lead 1 and 2.  
 
In these values we did not account for the site Digua, which provides by far the worst results 
of all the five sites with no method providing any improvement of the prediction skill. We noticed 
that indeed this site was located downstream from Anchicaya, therefore making its evolution 
not completely dependent of climatological values and more related with the dam management 
from the energy company.  
 
“Real-time” Predictions 
The “real-time” predictions are based on using as training set only available past data. Its 
results at Salvajina provide a reduced skill compared to the previous approach (Figure 2.3.5). 
With scores for the best performing methods only obtaining positive R2 for lead 1, correlations 
of less than 0.31 for all leads and RMSE below the 45% of the anomalous observational STD. 
Despite these results, the ultimate goal of this model was to provide better estimates than the 
ones considered by the energy company, and this was accomplished.  
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Figure 2.3.4 – Scores of the predictions at the other four sites of Celsia: Anchicaya, Calima, Dígua and 
Prado. RMSE as percentage of the standard deviation of the anomalies of the observations (solid lines).  
R2 coefficient (dashed lines) and Pearson correlation coefficient (dotted lines). 

 

 
Figure 2.3.5 – Predictions of Salvajina with lead 1 for all the models in the period 2017-2020 performing 
“Real-time” predictions approach.  

 
These results are not as good as expected based on the hindcast data, but further analysis 
should be done. Potential reasons behind the low performance could be simply a matter of the 
period that we are testing with no strong ENSO events limiting the predictability. The increased 
reliance on renewables for energy provision could have also an impact on the performance at 
this later period. An increase in the provision would increase the dam variability associated to 
an enhanced human induced management, which could decrease the direct relationship 
between climate variability and the dam variability. But further information of Celsia would be 
required to confirm this possibility.  
 
After achieving the first goal of providing an improved estimate of the river flow for the end-
user of Case study 5, this work is being developed further with the goal of a scientific paper. 
The work explores the added value and limits of seasonal prediction information used as 
predictors for variables not directly obtained by seasonal forecast systems (i.e. river flow) or 
poorly represented by these systems (i.e. precipitation).  
 
  



REPORT    D2.3 
 

REPORT    D2.2 
 

The role of large-scale climate phenomena and 
teleconnections on the predictability 

 
 
 

 
 
 

37 of 80 
 

 

2.4 Dynamical vs. statistical seasonal forecasts 
Seasonal predictions of key atmospheric variables are an important area in climate science, 
because of its large value for a wide range of end users (e.g. Rodriguez et al., 2018; Demirel 
et al., 2015; Torralba et al., 2017). These seasonal forecasts can be produced by either a 
statistical empirical seasonal forecasting system or a dynamical forecasting system.  
 
Statistical empirical methods have been used extensively (e.g. Barnston et al., 1999; Landsea 
and Knaff, 2000; Eden et al., 2015) and are based on observed relationships between certain 
predictors and the forecasted atmospheric variables (predictands). Dynamical forecasting 
systems on the other hand are based on numerical models that represent the governing 
processes in the atmosphere, ocean and land surface and their non-linear interactions. A 
disadvantage of the dynamical models is that they are inherently complex and computationally 
expensive. Furthermore, their model output often needs further calibration due to model drift 
towards their preferred climate state. Statistical models do not suffer from these two issues 
because their relationships are based on the observations themselves. Furthermore, the 
models tend to be relatively simple and easy to interpret. Arguably, statistical models can 
sometimes be too simple in order to capture the intricate non-linear relationships among 
predictor variables and the predictand. 
 
Though already many comparison studies have been done between statistical and dynamical 
forecasting systems (e.g. Qian et al., 2020) and combining both methods to so-called hybrid 
models (e.g. Schepen et al., 2012; Zhang et al., 2016), these are often done at a regional 
scale. Here we analyze a suit of statistical models and assess their added information relative 
to a suite of dynamical models on a global scale. 
 
We present an update of the relatively simple empirical statistical forecasting system from 
Eden et al. (2015) and implement more advanced statistical models based on tree-based 
regression systems. We assess the forecast skill of the statistical models and analyse their 
added value relative to dynamical seasonal forecasting models in a single and multi-model 
forecasting setup.  

2.4.1 Models and Data 
We will apply a suite of statistical methods for the forecasting system, ranging from relatively 
simple linear regression models to more advanced tree-based regression models. All models 
use the same predictors, however there are some differences in permutations of the predictors. 
We provide forecasts for near surface temperature (T2M) and precipitation. 
 
2.4.1.1 Data 
For T2M we use the GHCN-CAMS dataset (Fan and van den Dool, 2007) over land and 
ERSSTV5 (Huang et al., 2017) dataset over sea. For precipitation we use the GPCC dataset 
(Schneider et al., 2014). The predictors we use can be divided into local predictors (spatio-
temporal data), large scale climate indices and the CO2 equivalent forcing (CO2EQ) as a 
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predictor for the long-term trend. For the local predictors we use persistence (for T2M and 
Precipitation) and cumulative precipitation (for T2M). For the large-scale climate indices, we 
use the El-Niño Southern Oscillation (ENSO), the pacific decadal oscillation (PDO), Atlantic 
multidecadal oscillation (AMO), the Indian ocean dipole (IOD) and the North Atlantic Oscillation 
(NAO). Though there are many more teleconnections active throughout the ocean and 
atmosphere, we have selected these because of their predictive power on lead times in the 
order of months. We quantify ENSO through multiple indices, namely the NINO34 and NINO12 
index and the warm water volume (WWV). All SST based indices are calculated on the ERSST 
V5. For T2M we use the GHCN-CAMS dataset (ref) over land and ERSST v5. Table 2.4.1 
gives an overview of all the predictors used and which dataset is used. All data is re-gridded 
to a 1x1 grid and we use the time period ranging from 1961 to current. 
 
Table 2.4.1: Overview of predictand and predictor data 

Predictands 

T2M GHCN-CAMS 

Precipitation GPCC 
Predictors 

CO2EQ  
NINO34 ERSST V5 
NINO12 ERSST V5 
WWV POAMA / PEODAS 
PDO ERSST V5 
AMO ERSST V5 
IOD ERSST V5 
Precipitation GPCC 
Persistence - 

 
2.4.1.2 Statistical Empirical Models 
All models are set up in the same way but differ mainly in the predictor selection and fitting 
routine. All the models set up aim to predict the next 3-month mean, i.e. a forecast initiated 
early January will produce a forecast for FMA. Models are fitted for each grid point individually. 
The predictor and predictand data are first detrended based on a linear regression with 
CO2EQ, in order to have a stationary dataset. Then, if necessary, a predictor selection routine 
is done to assess the relevant predictors. Next, the model is fit to create a forecast, and 
hindcasts from 1961 to current are created using Leave-1year-out cross-validation. The trend 
previously subtracted is then added to the model in order to get the final results. All models 
have a global coverage and a horizontal resolution of 1 degree. 
 
2.4.1.3 Multiple Linear Regression (MLR) 
The MLR model can be seen as an updated version of the relatively simple empirical statistical 
forecasting system from Eden et al., 2015. It forecasts the next 3-month average based on the 
previous 3-month mean predictors. As an example, a forecast of T2M issued in January is 
based on OND predictor data and predicts FMA. 
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A recent update, relative to Eden et al. (2015), to this method is to also include 2nd order 
information in the predictors, by including the 3-month trend as predictor. In order to avoid 
overfitting by introducing too many predictors, for the climate indices an intermediate MLR 
model is used to predict the future state of the predictor, based on its previous 3-month mean 
and 3-month trend. The future state of the predictor is then used to fit the actual MLR model. 
For the NINO34 index this greatly reduces the spring predictability barrier (Figure 2.4.1). For 
persistence, an extra persistence trend predictor is added. Figure 2.4.1 shows the added value 
of using the 3-month trend as a predictor for the different climate indices. 
 

 
Figure 2.4.1:  Correlation between the climate indices. The dashed lines represent the lagged correlation 
between the 3-month mean and the 3-month mean 3 months ahead. E.g., January shows the correlation 
between OND average with the next FMA. The solid lines show the correlation between the forecasted 
climate index and the observed climate index. The forecasted index is based on a MLR model with the 
3-month mean and 3-month trend as predictors.      

 
Another update to the original forecasting system is to have a stricter predictor selection 
routine. Previously, only predictors were added that have a significant (p<0.05) correlation with 
the predictand. Though this removes non-relevant predictors, it does not account for co-
variability between predictors. This can e.g. be an issue in the NINO34 region, between the 
NINO34 index and persistence of SST. To overcome this, we first compute the correlation 
between the potential predictors and predictand. The predictor with the highest significant 
correlation is then chosen as a predictor, after which the linear relation between the chosen 
predictor and predictand is removed from the predictand time series. Hereafter, we again 
compute the correlation between the remaining potential predictors and the residual predictand 
time series, and include the strongest and significant predictor in the regression model. This is 
continued until there is no significant relation between a potential predictor and predictand, 
and is done for every grid point individually. 
 
The ensemble is calculated by randomly sampling from the residuals (forecast error) of the 
model fit. If there is poor predictability, the errors will be large thus the ensemble spread 
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relatively large. If there is good predictability, the errors will be small and thus the ensemble 
spread relatively small. 
 
The advantages of using the relatively simple MLR method is that we can identify the individual 
contribution of each predictor and works well on relatively small sample sizes. The 
disadvantages of using MLR is that it assumes a normal distribution and homoscedasticity, is 
sensitive to outliers and assumes a linear relationship. 
 
Note that besides MLR we also tested Lasso and Ridge regression, but found no improvement 
relative to MLR hence we did not proceed with these methods. 
 
2.4.1.4 Random Forest Regression (RFR) 
Random forest regression is a tree-based ensemble regression model, which is a popular 
machine learning tool used for many different forecasting problems and research fields. 
Random forests are constructed by individual decision trees. Decision trees can make very 
accurate predictions on the data it was trained on. However, it generally leads to very bad 
results on new (testing) data. To circumvent this, trees can be built using a bootstrapped 
sample of the original training data. The end result is achieved by taking the average of all 
these trees. This method is known as bagging, i.e. taking the aggregate of all the different trees 
based on bootstrapped training data. The main advantage of this method is that it performs 
much better on testing data, thus leading to better generalization. 
 
With these ML methods, there are multiple parameters that have to be defined. These are the 
maximum depth of the tree (max_depth), number of trees in the forest (n_estimators, i.e., how 
many trees in the forest), minimum samples per leaf (min_samples_split) and the maximum 
features (predictors) to choose from while making the tree (max_features). Given that the 
model is fit for each grid point, the optimal settings will differ per grid point. A first analysis 
showed that the RFR model was most sensitive to the maximum depth, hence we chose to 
perform a parameter selection routine on the maximum depth ranging from 1 to 7. Table 2.4.2 
lists the parameter settings. The parameter combination with the lowest mean square error 
(MSE) is used for the final model. Generally, in regions with low forecast skill the maximum 
depth is kept smaller to avoid overfitting, whereas in regions with larger predictability the 
maximum depth is higher. 
 
Table 2.4.2: Parameter combinations RFR models 

Parameter Setting 
Nr. of estimators 50 
Max. depth [1 .. 7] 
Max. features 3 
Min. samples split ? 

 
RFR models tend to be ‘data hungry’ (Van der Ploeg et al., 2014), i.e. require a large training 
sample in order to acquire stable models. The data used in this study covers 1961 to current, 
thus ~60 samples if the model is fit for each month individually and ~700 samples if the model 
is fit using all months together. Preferably the model is fitted per month individually because 
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predictor-predictand relations can differ strongly for the different months. However, initial tests 
pointed to stronger overfitting using only 60 samples relative to using the full dataset. This is 
why we constructed two RFR models, one that fits a model for each month individually (RFR-
M), and one model that uses the full sample (all months together, RFR-Y). Note that in the 
RFR-Y model we divide the predictand data by its monthly standard deviation prior to the model 
fit, and multiply the forecast again by its monthly standard deviation. This is done because 
variability can change over the different months, especially for precipitation, which can lead to 
unrealistic high variability over months with relatively low variability. 
 
We increased the number of predictors in the model by adding more permutations of the 
predictor data to the model. Besides the 3-month mean and 3-month trend, as done in the 
MLR model, we also added the 5-month mean, and 1-month values at lags of 1, 3 and 5 
months. We tested multiple predictor selection routines, but found no clear reduction in 
forecast error and greatly increased the model run time. Hence, we do not use a predictor 
selection routine for the RFR models. 
 
Probabilistic forecasts are constructed by considering all trees of the random forest, and not 
only the average or median value over these trees as generally done. Given that our nr. of 
estimators (trees in the forest) are 50, we have an ensemble size of 50. The advantages of 
RFR relative to MLR is that it assumes no distribution, and can handle non-linear relationships 
and heteroscedasticity. 
 
We also tested several other tree-based regression models such as the gradient boosting 
method and regression enhanced random forest, but these methods showed no clear 
improvement of standard RFR hence we did not proceed with these methods. 
 
2.4.1.5 Dynamical models 
In order to assess the added value of statistical models, we compare the statistical models to 
a suite of dynamical seasonal forecasts (listed in Table 2.1.1 in Section 2.1.1). The seasonal 
forecasts are all bias corrected on a monthly basis. 

2.4.2 Verification 
Despite the large improvements over recent times in observational products, there still remains 
relatively large observational uncertainty for certain regions. Different observational products 
can differ considerably making it non-trivial to select a single observational product for 
verification. Figure 2.4.2 shows the observational uncertainty, quantified by the disagreement 
(standard deviation) between multiple observational and reanalysis products (listed in Table 
2.4.3), Here we first compute the standard deviation (std) per time step between the different 
observational products, and then average this std over all months and years. It is no surprise 
that generally speaking there is a larger uncertainty around regions with less observations. 
However, there are many regions with a standard deviation around 0.5  oC, indicating a spread 
of around 2 oC. The statistical empirical models are all biased towards their own reference 
product, whilst the dynamical models are also all biased towards their respective observational 
product used for their initialization. Hence, which model performs better will depend strongly 
on which observational product is used as reference (or truth).  
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Figure 2.4.2: Observational uncertainty of T2M and precipitation quantified by the average standard 
deviation between all products used, by first computing the std between all products and then averaging 
over all the full time period. 

 
To circumvent this potential bias, we use the average of multiple observational and reanalysis 
products (ENS_OBS) as a reference dataset to evaluate the forecast skill. 
 
Table 2.4.3: List of observational and reanalysis products used. 
Product T2M Precipitation Reference 
ERA5 x x Copernicus Climate Change Service, 2017 
JRA-55 x x Kobayashi et al., 2014 
MERRA-2 x x Gelaro et al., 2017 
ERSST V5  x  Huang et al., 2017 
CRUTEM x  Harris et at., 2013 
GPCC  x Schneider et al. 2015 
GISTEMP x  Lenssen et al., 2019 

 

2.4.3 Results 
The forecast skill is quantified by the continuous ranked probability score (CRPS), which is an 
often-used measure for probabilistic forecasts. It quantifies the error based on the quadratic 
measure of the difference between the forecast cumulative density function and the observed 
value. We use the CRPS skill score variant (CRPSS), by directly comparing the CRPS of the 
forecast to a reference forecast (CRPSS = 1 - [CRPSfor-CRPSref]). Positive values indicate the 
forecast outperforms a reference forecast. 
 
2.4.3.1 MLR 
First, we will look at the forecast skill of the relatively simple MLR model. Figure 2.4.3 shows 
the CRPSS of T2M and PRECIP for the JJA and DJF forecasts, initiated in respectively May 
and November. We use a climatological forecast as reference, which is constructed by 
randomly sampling 51 values from the climatology with leave-1-out cross-validation.  
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It is clear from the T2M figures that forecast skill is greatest in the tropical regions, owing to 
the large influence of ENSO. Also, skill over the ocean is generally larger because of the 
stronger persistence of anomalies. In JJA we also find some skill over Europe, which is mainly 
related to the long-term trend.  

Figure 2.4.3: Forecast skill (CRPSS) with a climatological forecast as reference for the MLR model, for 
T2M and Precip and for DJF and JJA. The skill score is based on data from 1980 to 2016. 

 
For precipitation, the forecast skill is generally much lower. The teleconnections with ENSO do 
provide some skill over the northern part of South America, Australia, and southern part of 
North America.  
 
Negative values (worse than a climatological forecast) for both T2M and precipitation are to 
some extent caused by overfitting, but mostly due to differences in between GHCN (used as 
the observational estimate in the model fit) and ENS_OBS.  
 
Note than an extensive evaluation of the added benefit of the individual predictors is already 
done in Eden et al. (2015). In order to further understand and study the sources of 
predictability, we have made an online interactive application which allows analyzing the 
forecasts and the sources of predictability in more detail (http://climexp.knmi.nl/kprep_fc). 
 
2.4.3.2 RFR 
Next, we assess the forecast skill of the RFR-M model, where the MLR forecast is used as 
reference (Figure 2.4.4). Hence, red values indicate the RFR-M model outperform the MLR 
model, whereas blue values indicate the MLR model outperforms the RFR-M model. The RFR-
M outperforms the MLR forecasts for several regions, but there are also quite some regions 
where MLR outperforms the RFR-M model. There are distinct regions where one model 
performs better than the other, such as Russia for MLR and the Western Pacific for RFR-M. 
For precipitation, MLR mostly outperforms the RFR-M model with the exception of an area in 
Southern America for DJF and Northern Africa in JJA. 
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Figure 2.4.4: CRPSS of RFR-M with MLR as reference forecast, for T2M and precipitation on the 
forecasts valid for winter (DJF) and summer (JJA). The skill score is based on data from 1980 to 2016. 

Figure 2.4.5: Same as Figure 2.4.4, but now for RFR-Y instead of RFR-M. 

 
When comparing RFR-Y with MLR (Figure 2.4.5), we again find some regions where RFR-Y 
outperforms MLR, however there are considerably more regions where MLR outperforms 
RFR-Y. The RFR-Y model fails to reproduce some of the interannual variability (not shown) in 
the northern regions, where MLR and RFR-M are capable of reproducing some of the 
variability. It seems that for a lot of regions the seasonal relation between predictor and 
predictand differs considerably, leading to worse results when pooling all months together. For 
precipitation the MLR model seems to outperform RFR-Y in almost all regions. Again, also for 
precipitation the RFR-Y fails to reproduce the interannual variability in most regions. 
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The results indicate that using more advanced models does not necessarily lead to better 
results. RFR models generally need a large training set in order to create stable models, and 
it seems that ~60 years of data is not a large enough sample to really outperform MLR. By 
pooling all months together (RFR-Y) the sample size is largely increased (factor 12), but at the 
cost of losing the individual predictor-predictand relations on a monthly basis. Especially for 
ENSO, which is phase locked to the seasonal cycle, the relations differ strongly throughout the 
year, making RFR-Y less skilful than RFR-M. 
 
2.4.3.3 Statistical vs dynamical 
The advantage of statistical models relative to dynamical models is the low computation costs 
and an easier understanding of the sources of predictability, either through the regression 
coefficients (MLR) or feature importance's (RFR). It is however important to know whether 
statistical models provide added information relative to dynamical models. All analysis in this 
section is performed on data ranging from 1994 to 2016.          
            
In order to assess the added value of the statistical empirical models, we compare them to a 
set of dynamical forecasts (listed in table 2.1.1). We calculated the CRPS of each model 
(ENS_OBS as observational estimate) and selected the best performing model (lowest CRPS) 
per grid point (Figure 2.4.6). The labels in Figure 2.4.6 denote the type of model which 
performed best. It is clear that for most regions one of the dynamical models performed best. 
However, especially in the JJA, both for T2M and precipitation forecasts there are still quite 
some regions where either a RFR model or MLR performed best. 
 

Figure 2.4.6: Best scoring model type per grid point, based on minimum CRPS.  

 
2.4.3.4 Added value in a multi-model framework 
Though the results in Figure 2.4.6 indicate that mainly dynamical models provide the best 
individual forecast, this does not automatically indicate that there is no added value in using 
statistical forecasts. In general, a multi-model combination of seasonal forecasts tends to 
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outperform single seasonal forecasts (Hagedorn et al., 2005, see also previous sections in this 
report). Hence, in order to fully assess the added value of statistical models, we constructed a 
multi-model forecast of 5 models with every possible combination with the dynamical and 
statistical models available. This number was chosen as the average number of models in the 
optimal multi model combination was estimated to 4.5 models for the two variables over the 
domains investigated by UL in their study is found from Table 2.1.4. The model with the lowest 
RMSE was selected, after which we calculated how many statistical models were in this 
specific model. This analysis was performed for each grid point individually. The results can 
be found in Figure 2.4.7. It is clear that relative to Figure 2.4.6 there are many more regions 
where a statistical model provided additional information in a multi-model framework. For JJA 
and T2M there are even quite some regions (North America, South America, Europe) where 
at least 1 of the three models are statistical models. For precipitation, the results are a bit more 
scattered but do point to the same conclusion that in a multi-model framework there is 
regionally added value by combining statistical with dynamical models. 
  

Figure 2.4.7: Added value of statistical models in a multi-model framework. The values indicate how 
many statistical models were listed in the best performing multi-model combination. 

 
In order to assess which models performed best, we also computed where a certain model 
was selected in the best model combination. These results can be globally aggregated to form 
a global coverage percentage (Figure 2.4.8). From these results we can see that C3S-ECMWF 
(ECMWF-S5) is the best performing seasonal forecasting model, both for T2M and 
precipitation. The statistical models do score lower than the dynamical models, especially in 
DJF. For precipitation, the differences between the models are smaller. This is most likely 
related to the lower overall forecast skill, which will make the best model selection more 
random. 
 
Note that the analysis shown in Figure 2.4.7 and 2.4.8 should be treated as a qualitative 
analysis as no significance testing is performed. 
 



REPORT    D2.3 
 

REPORT    D2.2 
 

The role of large-scale climate phenomena and 
teleconnections on the predictability 

 
 
 

 
 
 

47 of 80 
 

Figure 2.4.8: Global coverage of models present in the best model combination. quantified by the global 
coverage. 

2.4.4 Conclusions 
In this analysis we analysed the forecast skill of relatively simple and more advanced statistical 
empirical forecasting systems, and assessed their added value relative to dynamical seasonal 
forecasting systems. The relatively simple seasonal forecast based on multiple linear 
regression performs quite well. It has good skill in the tropical regions, where there are strong 
teleconnections with large scale climate indices such as ENSO. Persistence of anomalies and 
the long-term trend is also a large source of forecast skill. 
 
RFR models improve the forecasts locally, but the small sample size hampers their forecast 
skill. By using the full sample (all months pooled together) the forecasts become more stable 
(less overfitting). This improves the forecast in certain regions, but mostly reduces forecast 
skill in other regions because it loses the individual predictand-predictor relations that differ 
throughout the year. Hence, we find no ‘best’ model for all grid points, but more an ensemble 
of statistical empirical models whose skill depends on the region considered. 
 
When comparing the statistical models to a suite of dynamical models, we find that in general 
the best individual models are one of the dynamical models, though the specific model varies 
depends on the area. There are some regions where the best forecast skill is obtained by a 
statistical model, but this is rather limited. In a multi-model framework, there are numerous 
regions where the multi-model average forecasts are improved by a combination of statistical 
and dynamical models instead of only using a combination of dynamical models. For JJA 
temperature e.g., there is added value in large parts of Northern and Southern America and 
Europe. Given that marginal improvements in seasonal forecasts of precipitation and 
temperature are already very useful for the energy sector, these results highlight the need for 
adding statistical models to multi-model ensemble seasonal forecasts. 
 
A scientific paper is in preparation describing the methodology of the statistical seasonal 
forecasts and its added value relative to dynamical seasonal forecasts.  
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2.5 Signal inflation in Seasonal climate predictions 

2.5.1 Can inflation of the forecast signal improve the seasonal climate predictions 
over Europe? 

In the North Atlantic and European region climate forecasts are known to have too small a 
signal to noise ratio in the models compared to observations (Eade et al 2014, Scaife and 
Smith 2018). Smith et al (2020) found that when the underprediction of the signal was 
accounted for, skilful winter predictions of decadal mean climate around the North Atlantic 
basin could be obtained. This result relied on the use of a very large multi-model ensemble, a 
skilful forecast of the North Atlantic Oscillation (NAO) Index and the sub-selection of ensemble 
members with a realistic NAO magnitude. Here we assess whether this approach can be used 
to improve seasonal climate forecasts over the European and North Atlantic region.  

2.5.2 Data and methods 
The skill in forecasting winter (December, January, and February) mean temperature, 
precipitation, and mean sea level pressure (MSLP) is assessed from a November start date, 
giving a 1-month lead time. The observational datasets used to assess forecast skill are listed 
in Table 2.5.1. Seasonal forecasts have been collated from modelling centres across Europe 
and North America (see Table 2.5.2). Retrospective forecasts, known as ‘hindcasts’, are 
available over a 24-year period, from 1993-2016. Different models have different climatological 
biases. To take this into account, for a given field, each ensemble member forecast is 
represented as an anomaly relative to its own model’s climatological average. After this step, 
all ensemble members are treated as though coming from the same model. An ensemble mean 
forecast is created by averaging across the individual member’s seasonal anomalies.  
 
Table 2.5.1: The observational datasets used in the seasonal forecast assessment 

Variable Observational dataset 
Mean sea level pressure (hPa) Hadley Centre sea level pressure (HadSLP2r) 
2m air temperature (K) HADCRUT4 
Precipitation (mm/day) Combined precipitation dataset v2.3 (GPCP) 

 
Table 2.5.2: The models used in the seasonal forecast assessment 

Centre Name Model version N. of ens. members 
Met Office, UK HadGEM3 GC2.0 (C3S v14) 28 
Météo-France 7 (C3S v7) 25 
CMCC, Italy CM2 (C3S v3) 40 

ECMWF SEAS5 (C3S v5) 25 
DWD, Germany GCSDv2.1 (C3S v2) 30 

NCEP, US CFSv2 (C3S v2) 24 
JMA, Japan MRI-CPS2 (C3S v2) 10 

ECCC, Canada CanSIPSv2 20 
 Total 202 
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An assessment of forecast skill is made by calculating both the Pearson correlation coefficient 
and the root mean square error (RMSE) between the observed climate and two sets of 
forecasts. 
 
1) The first forecast set is simply the ‘raw’ ensemble mean across all available ensemble 
members (all 202 members). A raw ensemble mean forecast is calculated for MSLP, 
Temperature, precipitation and the NAO and referred to with a subscript ‘ens’. 
 
2) The second forecast set is an ensemble mean across a limited selection of forecast 
members, following the Smith et al (2020) methodology to inflate the forecast signal. This two-
step process is described below:  
 
Step 1: Inflation of the signal strength using the full ensemble.  
The raw ensemble mean NAO forecast (NAOens) is inflated by multiplying by the Ratio of 
Predictable Signals (RPS), as defined below: 
 

NAOinf = NAOens * RPS (Eq. 2.5.1) 
 

RPS = RPC		+
!
"!"#$

+%"!"#$
  (Eq. 2.5.2) 

 
With 𝜎#'#',- the  observed standard deviation of the NAO , 𝜎"'#',- the standard deviation of 
all the ensemble members NAO index, and RPC the Ratio of Predictable Components. The 
latter is defined as  
 

RPC = ACC / 4 +%&'(
+%"!"#$

5 (Eq. 2.5.3) 

 
The ACC is the  anomaly correlation coefficient between observed and model ensemble mean 
NAO and 𝜎"./0 the  standard deviation of the model ensemble mean NAO. 
 
 
Step 2: sub-selection of ensemble members to create the new forecast.  
For a given winter, the 40 individual ensemble members which have the closest NAO value to 
that winter’s  inflated ensemble mean NAO value (NAOinf) are selected from the 202 available. 
The forecasts of MSLP, temperature and rainfall for these 40 members are then averaged to 
give a new ‘post processed’ forecast. As the inflated ensemble mean NAO value changes each 
winter, the 40 members chosen will also vary between winters.  
 

2.5.3 Results: Raw model skill 
The raw skill in forecasting winter MSLP, 2m temperature and precipitation, using the full 
ensemble, is shown in Figures 2.5.1-3. Forecast skill is considered robust where the Pearson 
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correlation is statistically significant at the 5% level, using a 1-sided Fisher Z test (shown by 
stippling). Considering the North Atlantic and European region, skilful forecasts of MSLP are 
found in the Atlantic basin north of Iceland. Skilful temperature forecasts are found over the 
North Atlantic and parts of Scandinavia, whilst there are no regions of significant precipitation 
skill in Western Europe.  

 
Figure 2.5.1: Raw winter MSLP skill. The Pearson correlation coefficient between observed and multi-
model ensemble mean. Statistically significant skill at the 5% level is shown by stippling, using a 1-sided 
Fisher Z test.   

 
Figure 2.5.2: Raw winter temperature skill. The Pearson correlation coefficient between observed and 
multi-model ensemble mean. Statistically significant skill at the 5% level is shown by stippling, using a 
1-sided Fisher Z test.   
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Figure 2.5.3: Raw winter precipitation skill. The Pearson correlation coefficient between observed and 
multi-model ensemble mean. Statistically significant skill at the 5% level is shown by stippling, using a 
1-sided Fisher Z test.   

 
The raw forecast of the North Atlantic Oscillation (NAOens) is skilful, with a Pearson correlation 
of 0.48, as shown in Figure 2.5.4. As detailed above, NAOens is calculated using all 202 
ensemble members. It had been hoped that this large ensemble would lead to a significantly 
more skilful forecast than that possible with individual models. This is not the case with the 
most skilful models having similar prediction skill to the ensemble mean, for example the UK 
Met Office model has a correlation of 0.49 and the German model a correlation of 0.47 (see 
Table 2.5.3).  
 
Table 2.5.3: Winter mean NAO forecast skill, given by the Pearson correlation coefficient for each model 
individually and for the full ensemble mean. Statistically significant skill at the 5% level is shown by a 
star (*), using a 1-sided Fisher Z test.   

Centre Name NAO forecast skill 
(Pearson correlation) 

Met Office, UK 0.49* 
Météo-France 0.19 
CMCC, Italy 0.28 
ECMWF 0.32 
DWD, Germany 0.47* 
NCEP, US 0.29 
JMA, Japan 0.22 
ECCC, Canada 0.45* 
Ensemble mean (NAOens) 0.48* 
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Figure 2.5.4: Winter mean North Atlantic Oscillation Index of observations (black), individual ensemble 
members (cyan) and multi-model ensemble mean (blue). The Pearson correlation coefficient (rp) is given 
in the title. 

 
 

2.5.4 Post-processed forecast skill, the impact of strengthening of the forecast 
signal 

The Ratio of Predictable (RPS) signals for the NAO is 2.1 when calculated following equation 
2.5.2. Consequently, the inflated NAO value (NAOinf) for a given winter, is approximately two 
times larger than the original raw ensemble mean value (NAOens), following equation 2.5.1. 
The inflated ensemble mean NAO index (NAOinf) is shown in red in Figure 2.5.5. This inflation 
process does not modify the correlation with the observed NAO. 
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Figure 2.5.5: The impact of inflation:  Winter mean North Atlantic Oscillation Index of observations 
(black), individual ensemble members (cyan) and ensemble mean (NAOens, blue) and inflated 
ensemble mean (NAOinf, red). 

 
 
Figure 2.5.6: This figure is the same as 2.5.5, except that only the ensemble members chosen as part 
of step 2 are now shown in cyan. Winter mean North Atlantic Oscillation Index of observations (black), 
individual ensemble members (cyan) and inflated ensemble mean (NAOinf, red). 



REPORT    D2.3 
 

REPORT    D2.2 
 

The role of large-scale climate phenomena and 
teleconnections on the predictability 

 
 
 

 
 
 

54 of 80 
 

 
Figure 2.5.6 shows in cyan the ensemble members that have been chosen in step 2. The 40 
nearest ensemble members to the ensemble mean NAO value (in red) for each year have 
been selected. The corresponding fields of MSLP, temperature and precipitation for each of 
the selected members are then averaged to give the new ‘post-processed’ forecast.  
 
Figures 2.5.7-9 show the change in root mean square error (RMSE) of the forecasts after post-
processing, for MSLP, temperature and precipitation respectively. The forecast RMSE of 
MSLP increases over many areas of the North Atlantic after post processing, whilst over 
mainland Europe, there is little change. The post processed temperature forecast RMSE 
improves over eastern Europe/Russia, with little change over Western Europe. Over Europe 
the post processing method does not improve the rainfall forecasts.  A similar picture is seen 
when using the Pearson correlation coefficient as the skill measure (not shown).  
 
In conclusion, strengthening the forecast signal does not give significant benefits for seasonal 
prediction of winter mean temperature and rainfall over Europe. This is in contrast with the 
improvements in decadal prediction of surface climate found in Smith et al (2020). The higher 
prediction skill in the NAO at the decadal timescale (r =0.79 compared to r=0.48) is likely the 
main reason for the difference, driven in part by the much larger ensemble available. The 
inflation factor for the NAO signal is also much larger in the decadal prediction setting, with an 
RPC of 11 compared to 2 for seasonal prediction.  
 
The strengthening of the forecast signal will consequently be having a much larger impact on 
the decadal predictions than for the seasonal predictions. In addition, over the decadal 
hindcast period, the climate change signal is much larger than that over the shorter seasonal 
hindcast period. The signal inflation method may therefore be better balancing the climate 
change and dynamical influences in the decadal predictions, giving the improvements seen. If 
additional seasonal forecasts become available and the ensemble mean NAO skill improves, 
it would be worth revisiting whether the signal inflation method explored here can improve 
surface climate predictions over Europe. 
 
 



REPORT    D2.3 
 

REPORT    D2.2 
 

The role of large-scale climate phenomena and 
teleconnections on the predictability 

 
 
 

 
 
 

55 of 80 
 

 
Figure 2.5.7: The Root Mean Square Error (RMSE) of MSLP for the raw multi-model ensemble mean 
(upper), the post-processed ensemble mean (middle) and the difference (lower). In the lower panel red 
shows the signal inflation/sub-selection method gives an improvement in forecast MSLP, blue a 
degradation. 
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Figure 2.5.8: The Root Mean Square Error (RMSE) of 2m temperature for the raw multi-model ensemble 
mean (upper), the post-processed ensemble mean (middle) and the difference (lower). In the lower 
panel red shows the signal inflation/sub-selection method gives an improvement in forecast 
temperature, blue a degradation. 
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Figure 2.5.9: The Root Mean Square Error (RMSE) of winter mean precipitation rate for the raw multi-
model ensemble mean (upper), the post-processed ensemble mean (middle) and the difference (lower). 
In the lower panel red shows the signal inflation/sub-selection method gives an improvement in forecast 
precipitation, blue a degradation.  
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2.6 Calibration Boost method 
Seasonal Forecasts (SFs) systems provide a large set of forecasts for the same month, over 
the same geographic area. As an example, the ECMWF System 5 (Johnson et al. 2019) 
provides 51 realizations for each predicted date. From the modeller’s point of view, this multi-
choice product allows for the most objective picture of the possible evolutions of the weather 
in the future. Instead, from an end-user perspective, the requirement is binary: yes or no, 
whether to expect an adverse event or not. Industrial and financial decisions require non-
ambiguous answers on whether to hedge or whether to insure against the anomaly.  
 
To meet user requirements, a surrogate of probabilistic approach should be applied to the SF 
ensemble members to reduce multiple “opinions” between the ensemble members into a single 
value, or signal. Typically the standard choice in this case is to consider the ensemble mean. 
Here however we want to try to improve on this standard approach, as the ensemble mean 
tends to have a weak signal compared to the observed one. In this work we developed a 
methodology, called Calibration Boost (or Boosted Mean), to transform multiple SFs into a 
single and more pronounced signal. In essence, a sample of members is selected based on 
the confidence of the forecast. For example, if more than 60% of ensemble members agree 
on the sign of the anomaly, then these ensemble members are considered while those that 
present the opposite sign are rejected.  
 
The methodology here presented, aims to obtain the method which represents best the ERA5 
anomalies in terms of their month-to-month variability. The assessment of the Calibration 
Boost methodology is focused on various spatial scales: at local scale, globally for each model 
grid, “global area-weighted index” and, also at a country level. The agreement between 
calibrated SF and ERA5 is then evaluated at these spatial scales for each calendar month and 
each forecast lead time. 
 

2.6.1 Data 
For this investigation, we used SF outputs from five models: ECMWF, DWD, Météo-France 
(MF), NCEP and CMCC. We considered only monthly averages of three weather parameters: 
2m air temperature (T2M), 10m wind speed (WS10) and the global downwelling short-wave 
horizontal irradiance (GHI). The ERA5 reanalysis (Copernicus Climate Change Service, 2017) 
was chosen as the reference for both the SF calibration and for the SF assessment. Both SF 
and ERA5 data are processed over the 24-year period, 1993-2016, namely the common 
hindcast period for SFs, and with a 1o resolution. We consider 25 ensemble members for each 
model. 
 

2.6.2 Methodology 
The Calibration Boost methodology was developed through six variations. These depend on 
the method anomalies are computed. They are described next.  
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1. SF_orig_anoms refers to SF anomalies calculated as follows. The original 25 ensemble 
members are combined and the 23-year ERA5 climatology (namely, 24 years minus 
the one targeted) subtracted. To combine the 25 ensemble members we use the 
median of 25 values. 23-year ERA5 climatology is the multi-year median. When 
calculating SF anomaly, the corresponding multi-year climatology (reference for a given 
year) includes all years except the one being considered. 

2. SF_anoms: to calculate SF anomalies we first apply a quantile correction to each of 25 
ensemble members. Bias correction is applied to 25 SF ensemble members with 
respect to the ERA5 monthly distribution. Second: we take the median of these 25 
corrected values. Third, we calculate the anomaly: SF median for current year minus 
23-year median for ERA5. The reference climatology includes all years except the one 
being considered. 

3. SF_Boosted_anoms: to calculate SF anomalies we first apply the quantile correction 
to each of 25 ensemble members. Second: we evaluated how many ensemble 
members suggest positive (negative) anomaly relative to reference SF long-term 
average (average out of 25 scenarios times 24 years). Next, if more than x% of 
ensemble members agree on the sign of anomaly, then we take the median of these 
“similar” forecasts, while rejecting the other SF ensemble members (rejecting (100-x)% 
of data). Thus, we give more weight to those forecasts with similar opinion. Last, we 
calculate the anomaly: SF for current year minus 23-year ERA5 climatology. This 
majority vote was tested with 60%, 70% and 80% thresholds. The reference 
climatology includes all years except the one being considered. 

4. SF_Boosted_anom_nqa_60: to calculate SF anomalies we don’t apply the quantile 
correction to 25 ensemble members. We apply the Boosting approach without a 
calibration. If more than 60% of ensemble members agree on the sign of the anomaly, 
then we take the median of these “similar” forecasts, while rejecting other SF ensemble 
members (rejecting less than 40% of data). 60% is the threshold for majority vote. Last, 
we calculate the anomaly: SF for current year minus 23-year SF climatology calculated 
from the original SF data. The reference climatology for each given year never includes 
current year, but all other years 

5. SF_Boosted_anom_nqa_70: to calculate SF anomalies we don’t apply quantile 
correction to 25 ensemble members. We apply “boosting” without prior calibration. 
Threshold is 70% majority vote. Last, we calculate the anomaly: SF average for current 
year minus 23-year median of the original SF data. 

6. SF_Boosted_anom_nqa_80: to calculate SF anomalies we don’t apply quantile 
correction to 25 ensemble members. We apply “boosting” without prior calibration. 
Threshold is 80% majority vote. Last, we calculate the anomaly: SF average for current 
year minus 23-year median of the original SF data. The reference climatology for each 
given year never includes current year, but all other years. 

 

2.6.3 Results 
We evaluated the agreement between each version of SF anomaly product (as listed above) 
and ERA5 at each grid location, for each calendar month, and lead times from 1 to 5 months. 
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All six methods were applied to the five SF models. We assess the skill of the seasonal 
forecasts by calculating the Correlation Coefficient, Adjusted R-Squared, Mean Absolute Error 
(MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE). While we also 
processed WS10 and GHI, for brevity we show only the results for T2M. 
 
2.6.3.1 Local comparison for 2m air temperature (TA) 
We illustrate first the Calibration Boost methodology for one randomly selected grid location 
over land: 45°N 1°E (Figure 2.6.1). The distribution of all original 25 ensemble members in all 
years (for a given calendar month) in the context of ERA5 temperature distribution is shown in 
Figure 2.6.2.A. It illustrates the original SF data before applying the Calibration Boost method, 
and compares the distributions between ERA5 and the original SF data. At each given location 
we have only 24 monthly values of temperature in January for ERA5, while for ECMWF SF we 
have 24 years with 25 ensemble members for each calendar month. Thus, Figure 2.6.2.A 
compares the distribution of the 24 values for ERA5 versus the distribution of 600 (24x25) 
values for SF. The distribution is calculated as percentage of the available data, i.e. percentage 
out of 24 values for ERA5 or out of 600 values for SF. We observe some differences in the 
distributions, with narrower distribution of ERA5 against the SF data and a higher upper tail. 
Additionally, Figure 2.6.2.A indicates also that a 24-year record is too short for distribution 
corrections, as the 24-value sample of ERA5 is most likely not gaussian. 
 

 
Figure 2.6.1. Focus domain for methodology test. Model (45°N 1°E) and the corresponding 1°lat by 
1°lon grid box.  

 
In Figure 2.6.2 B, C and D we compare ERA5 year-to-year monthly anomalies in January 
versus the 24 SF anomalies calculated with SF_orig_anoms, SF_anom (median of quantile 
adjusted ensemble members) and SF_B_anoms (quantile adjusted SF anomalies with the 
70% majority vote). For B and C, we perform a quantile adjustment to correct (shift) each SF 
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ensemble member value according to the quantile range it falls into. In fact, we can observe 
that the calibration reduces the extreme SF ensemble members values reduces towards “less 
extreme” values, as the distribution of the resulting quantile adjusted SF monthly anomalies 
has no tails. However, when the majority vote is applied to the quantile adjusted SF ensemble 
members (Figure 2.6.2.D) it generates new positive anomalies. This method yields a 
‘conservative’ distribution, namely with evenly distributed weak positive and negative 
anomalies. While such distribution of T2M does not follow a normal distribution, this result 
could still add a value for further classifications between near-normal and rare events. This 
seems to point to the fact that in order to achieve a more effective quantile adjustment a longer 
reference data set would be needed, perhaps using the entire ERA5 period (though this would 
introduce inconsistencies between ERA5 and SF, such as different trends, due to the different 
periods used).  
 

 
Figure 2.6.2. Comparison between ERA5 and SF: before and after calibration method applied. Starting 
month January, lead time zero month ahead, Forecast for January. Temperature forecast for January is 
compared against the historical record. (A) Distribution of the original ERA5 monthly temperature values 
(24 years) and the original ECMWF SF monthly temperature values with all ensemble members for each 
of 24 years. Units on plot A : [°K] Distributions of anomalies: (B) E5_anoms vs SF_orig_anoms, (C) 
E5_anoms vs SF_anoms, (D) E5_anoms vs SF_B_anoms. Anomalies [°K] are calculated relative to 
ERA5 climatology, location : 45°N 1°E. 

 
While Figure 2.6.2 B-C-D reflects the distribution of temperature anomaly values during a 24-
year period, Figure 2.6.3 illustrates the year-by-year evolution of the same temperature 
anomalies. Here we show the SF anomalies of the ECMWF model calculated with all 6 
methods tested in this work. This example in one location demonstrates that only boosted 
methods (with majority vote) without quantile calibration (dashed curves) capture better the 
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amplitude of big anomalies of ERA5. This result shows, on the one hand, that if the user’s 
objective is to capture anomaly amplitudes, the boosted method (with 60, 70, 80% majority 
vote) is very useful. On the other hand, it remarks the limitation of using a short sample data 
(24 year), as the quantile correction tends to underestimate the amplitude of year-to-year 
anomalies.  

 
Figure 2.6.3. ECMWF SF and ERA5 2m air temperature year-to-year monthly anomalies. Starting month 
January, lead time 1 month ahead. SF anomalies are calculated with 6 methods. <nqa> abbreviation 
holds for <no quantile adjustment>. Dashed curves: <nqa> SF anomalies are calculated relative to SF 
climatology (except same year). Plain curves: SF anomalies calculated relative to ERA5 climatology 
(except same year). Both ECMWF SF and ERA5 are in 1°lat by 1°lon resolution. Location 45°N 1°E.  
 

 
Success Score metrics were also applied to each of the six SF anomaly calculation methods 
versions (Figure 2.6.4). The scores were classified into four groups:  

• Successful alert - when the forecasted alert is correct in both, sign and amplitude. It is 
measured as percentage of such alerts relative to all alerts which should have been 
done.  

• False alert - when the alert is forecasted by SF, while nothing happened. It is measured 
as percentage of such alerts relative to all alerts ever done, no matter the anomaly sign 
(because the anomaly didn’t happen). 

• Missed alert - when the extreme happened, extreme not predicted by SF. It could 
happen that forecasted anomaly is too weak (i.e. prediction of non-extreme event). It is 
measured as percentage of such alerts relative to all alerts which should have been 
done. 

• Wrong alert - when the extreme happened, extreme predicted BUT predicted with a 
wrong sign. It is measured as percentage of such events relative to all alerts ever done. 
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Figure 2.6.4. Success score (%) for anomaly forecast for both lower and upper 30% distribution tails 
together. Best results are highlighted in colour. SF data: ECMWF. Starting month January. Leadtime 1 
month. Having a 24-year record (1993-2016), the upper and lower 30% tails represent together 14 years. 
<nqa> abbreviation stands for <no quantile adjustment>. <nqa> SF anomalies are calculated relative to 
SF climatology (except same year). <SF_orig_anoms_sfref> anomalies are calculated relative to SF 
climatology also. Anomalies for other SF versions are calculated relative to ERA5 climatology (except 
same year). Location: 45N 1E.  

 
At this particular location, about 64-71% of extreme events were forecasted to be extreme by 
all six methods, with the best performance of the “60% majority vote” without quantile 
adjustment (SF_Boosted_anom_nqa_60). Also, at this location there were no wrong alerts (the 
extreme event happened according to ERA5 and it was predicted with the wrong sign). False 
alerts occurred between 28-36% of SF alerts. This could indicate to the possibility of having 
an anomaly in ERA5 that year, but not an exceptional anomaly predicted by the SF. Finally, 
29-36% of extreme anomalies were registered as missed alerts, SF not forecasting as 
extremes compared to ERA5 by either method.  
 
We want to remark that the definition of the threshold for extreme events depends on the 
definition with regard to the final user. For instance, it could be defined in respect to some 
economic indicator or yield volume loss. In this study we used the arbitrary anomaly threshold 
to illustrate the skill of the Seasonal Forecasts over the test area.  
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2.6.3.2 Analysis of results: skill of Seasonal Forecasts for 2m air temperature (TA) on a global 
scale. 

On a global scale and for all calendar months, SF_orig_anom method correlates best with 
ERA5 compared to the other five SF anomaly calculation methods. An example of the regional 
differences in the correlation coefficient for the forecast of February is shown in Figure 2.6.5. 
In general, we can conclude that in those regions where the correlation coefficient is above 0.5 
there is an added value of the seasonal forecasts produced in January for one month ahead. 
For T2M SF_orig_anom method is the only one giving significant correlation for lead time 2, 
regardless of the SF model.  
 

 
Figure 2.6.5. Comparison between ERA5 and SF_orig_anom. Correlation Coefficient is calculated at 
each grid location. SF data: ECMWF. Starting date is January with lead time 1 month (forecast for 
February initialised in January). Correlation Coefficient calculated with a 24-length sample is significant 
at 99% if exceeds 0.496. Correlations are significant in all areas except those highlighted by dark blue 
colour.  

 

Figure 2.6.6 illustrates the month-by-month evolution of the globally averaged skill of the SFs 
trough the Adjusted R-Squared at each grid point and averaged globally. For each starting 
forecast month (calendar month) we have six forward forecast steps (lead times), 
corresponding to the six months ahead. The first forecast (six-month long curve) is the 
Adjusted R-Squared for each of six months between January and June. The second 6-month 
long forecast is the Adjusted R-Squared for months from February to July. And so on until the 
last forecast, corresponding to months from December to May of the next year. As an example, 
ECMWF SF_orig_anom explains up to 37% of variance 2 months ahead (lead time 2), while 
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other five SF anomaly calculation methods explain up to 32% of variance in ERA5 monthly 
temperature anomalies. 
 
On a global scale the agreement (Adjusted R-Squared) between SF and ERA5 is high for the 
first forecast month (Figure 2.6.6), dropping by as much as 50% for the following forecast 
month (lead time 2). Among the six SF calculation methods, SF_orig_anom performs best 
throughout the year. The spread between the six points (for the same calendar months) 
demonstrates the sensitivity of the results to the method chosen. According to this global 
picture: while the method used to calculate SF_orig_anom allows for a three and even four 
months forecast for all calendar months, other methods do not perform that well. This 
conclusion doesn’t necessarily hold on a local scale.  
 
For lead time 3 on a global scale, ECMWF SF_orig_anom still performs well, explaining along 
the entire year between 26-32% of variance in ERA5 monthly temperature anomalies (Figure 
2.6.6). These encouraging results on a global scale indicate that ECMWF SF_orig_anom could 
be a good option for forecasting 3 months ahead in all calendar months, all seasons, both on 
a local and regional scales. When the DWD system is tested, its results agree with ECMWF 
on global scale. There is also potential in testing DWD SF_orig_anom on a regional scale up 
to 3 months ahead. On the global scale, with the exception for April, May and October, DWD 
SF_orig_anom with the lead time of 3 months ahead explains 24-27% of variance (significant 
at 99%) of ERA5 monthly temperature anomalies. On a global scale our results for the Météo-
France model indicate that SF_orig_anom could be used for a 3 month ahead forecast in all 
months except for the starting months from March-to-June. On a global scale the skill of NCEP 
model for up to 3 months ahead is weaker compared to other models explored here, 
independent of the calendar month.  
 
On a global scale, the forecasts by ECMWF and CMCC models appear as the most relevant 
for 1 to 3 months ahead. CMCC SF_orig_anom explains up to 54%, 32% and 28% of variance 
respectively for 1 to 3 months ahead (significant at 99% level). These results obtained from a 
global scale on average, and may differ from one geographic zone to another.  
 
In terms of the Mean Absolute Error (MAE) of seasonal forecasts, when comparing SF 
anomalies and ERA5 on a global scale, the ECMWF model is of the order of magnitude 0.5-
1.2°C between different calendar months and different lead times. On a global scale, for all 
models, MAE is smaller during May-October months. 

2.6.4 Evaluation of Calibration Boost methodology: results case study 4 
After the local and the global assessment of results we focus on regional performance of 
Calibration Boost methodology. Seasonal forecasts are evaluated at each model grid location 
within the continental Spain. Figure 2.6.7 illustrates the map of the Adjusted R-Squared at each 
model grid location (numbers). Year-to-year monthly SF anomalies for each model grid 
location are calculated relative to local ERA5 climatology. As the figure shows, the highest 
variability explained is located in the west of Spain, and particularly north-west, driven by large 
fronts coming from the Atlantic that might be easier to predict.  
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Figure 2.6.6. Month-by-month evolution of the globally averaged Adjusted R-squared calculated for each 
model grid. Adjusted R-squared statistics is calculated between ERA5 monthly anomalies and 6 
versions of SF anomalies. Parameter: 2m air temperature. SF data: ECMWF. Each local value of 
Adjusted R-squared is first grid box area weighted, and then after area averaged over the entire Globe 
without any filters. Grid resolution 1°lat by 1°lon. For each given starting month: six curves correspond 
to either version of SF anomaly calculation methods. <nqa> abbreviation holds for <no quantile 
adjustment>. No filter applied in order to preserve the global picture of the SF skill. No significance test 
applied. No normal distribution test applied. Years: 1993-2016 

 
Figure 2.6.8 illustrates the adjusted R-Squared as the proportion of the year-to-year variance 
in ERA5 temperature anomalies explained by year-to-year variations in SF monthly 
temperature anomalies. It is shown how results depend on the season (calendar month), the 
forward forecast time scale (up to six months ahead) and SF anomaly calculation methodology 
(six versions of SF anomaly).  
 
On the left-hand side of Figure 2.6.8 we have the December forecast for 6 months ahead (for 
January-June months). This December forecast is illustrated with six curves (one for each 
method) all correspond to the forecast starting month in January. Those forecasts with the 
starting month in January are referenced in the legend as “Jan”. Forecasts with the starting 
month in December (valid for December-May next year) are referenced in the legend as “Dec”. 
For each starting calendar month and each forecast lead time step (1 to 6 months), we 
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calculate the regional average of all local Adjusted R-Squared within country contour. The 
average of all local Adjusted R-Squared values showed in Figure 2.6.7 corresponds to one 
value of the “SF_orig_anom” curve in Figure 2.6.8. The regional average Adjusted R-Squared 
for August as starting month and one month lead time is equal to 0.45. The regional average 
in this example is evaluated within the continental Spain.  
 

 
Figure 2.6.7. Adjusted R-Squared (numbers) between ERA5 and ECMWF SF_orig_anoms anomalies 
for 2m air temperature. Starting month: August. Leadtime: 1 month ahead. Adjusted R-Squared 
(agreement between SF vs ERA5) is calculated individually for each 1°lat x 1°lon grid location. The 
median is used to calculate the reference climatology and also for the ensemble member averaging. In 
this example, the overall average of local Adjusted R-Squared values is equal to 0.45. This result 
indicates that, on average, the Seasonal Forecast (in August) for September explains 45% of the year-
to-year variations in ERA5 anomalies in September, while locally the Adjusted R-Squared values range 
within 0.26-0.65. For a 24-year record the Adjusted R-Squared is significant if exceeds 0.24. 

 
Results differ a lot depending on the method used, the selected region, the starting calendar 
month, and the forward forecast time step. As can be deduced from Figure 2.6.8, there is a 
spread between the six anomaly calculation methods. SF_orig_anom is calculated with the 
simplest method and also it appears to have the highest Adjusted R-Squared values when 
comparing to ERA5: highest relative to other five anomaly calculation methods. When 
comparing between five SF models, the explained variance for 1-month lead time is significant 
and the highest for ECMWF model. This statement holds for this particular region, while the 
model performance could be different between regions and different weather parameters.  
According to our results, the explained variance for ECMWF for 1-month lead time is within 
28-62% though the entire year, above 50% for January, April, May, July and September 
months. 
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Figure 2.6.8. Adjusted R-Squared: comparison between ERA5 and ECMWF SF anomalies. Parameter: 
T2M. Example for starting months (first forecast month): January, March, August and December. 
Forecast lead times are one to six months ahead which explains why the lines are six-months long. 
Adjusted R-Squared values are calculated individually for each 1°lat x 1°lon grid point and then averaged 
over the region. For a 24-year record the Adjusted R-Squared is significant if exceeds 0.24.  

 
Comparison for this region between different SF models can be summarised as follows. The 
explained variance for the CMCC model for one month lead time is within 25-49%, so below 
50% in all calendar months (weaker skill compared to ECMWF model). Explained variance for 
DWD model for 1-month lead time is within 0.18-0.52, only above 50% for starting month 
January. Explained variance for Météo-France model for 1-month lead time is within 0.11-0.49 
in all months (Figure 2.6.9). Explained variance for NCEP model for 1-month lead time is within 
0.10-0.37 in all months. 
 
In Figure 2.6.10 is shown the evolution of the Mean Absolute Error of SF_orig_anom 
throughout the year of the Météo-France model, which have similar values for the different 
initialized months. It is also remarkable from this plot, that depending on the initialization month, 
the lead time dependency on the MAE it is not very strong. Instead, there seems to be more 
related to the predicted month itself, showing larger values in the winter months than in the 
spring-summer months.  
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Figure 2.6.9. Adjusted R-Squared between ERA5 and Météo-France SF anomalies. Parameter: 2m air 
temperature. Example for starting months (first forecast month): February, April, May, July, August and 
September. Forecast lead times are one to six months ahead. Adjusted R-Squared are calculated 
individually for each 1°lat x 1°lon grid point. For a 24-year record the Adjusted R-Squared is significant 
if exceeds 0.24. 

 
Figure 2.6.10.  Mean Absolute Error (MAE) for Météo-France model: comparison of SF anomalies 
relative to ERA5 anomalies. Parameter: 2m air temperature. Units: °C. Example for starting months (first 
forecast month): February, April, May, July, August and September. Forecast lead times are one to six 
months ahead: 6-month long curves. Mean Absolute Error (MAE) is calculated individually for each 1°lat 
x 1°lon grid point and then averaged within the region.  
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Results for five models agree that the skill does not decrease linearly with the forward forecast 
time step (Figure 2.6.8 and Figure 2.6.9). Following ECMWF model (Figure 2.6.8) the 
December forecast is significant for January and also for June with an Adjusted R-Squared 
above 0.1, while months in between obtained values close to zero (at least with the current 
method formulation, given area). Also, according to Figure 2.6.8 the ECMWF February 
forecast works well for March and May, while non-relevant for April. Météo-France model 
(Figure 2.6.9) follows a similar pattern. Météo-France forecast in June (starting month is July) 
is significant for July and September, while non-relevant for August (Figure 2.6.9). 
 
Figure 2.6.11 illustrates the Adjusted R-Squared for the same starting month but for the forward 
forecast of 2 months ahead instead of 1 month as illustrated in Figure 2.6.7.  
 

 
Figure 2.6.11. Adjusted R-Squared (agreement) between ERA5 and ECMWF SF anomalies. Parameter: 
2m air temperature. Adj. R-Squared is calculated individually for each 1°lat x 1°lon grid point. Contour: 
continental Spain. Starting month: August. Leadtime: 2 months ahead. Method: median for climatology 
calculations and also for ensemble member averaging. In this example, the overall average of all local 
Adj. R-Squared values is equal to 0.29. This result indicates that, on average, the Seasonal Forecast 
(in August) for September explains 29% of the year-to-year variations in ERA5 anomalies in September, 
while locally the Adj. R-Squared values range within 0.04-0.55. For a 24-year record the Adj. R-Squared 
is significant if exceeds 0.24. 
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2.6.5 Conclusions 
1. Quantile adjustment alone has a positive effect on bias correction. So far quantile 

adjustment generates a loss in variability between the original SF anomalies and the 
corrected SF anomalies. True for low resolution ERA5 in 1°lat x 1°lon grid. 

2. Seasonal Forecast anomalies calculated with the Calibration Boost method (“majority 
vote”) applied to filter between ensemble members appeared to be useful. SF 
anomalies calculated with the “majority vote” capture well the anomaly amplitudes and 
variability. 

3. Shifting the 23-year sample for climatology calculations contributes to uncertainty in 
year-to-year anomaly amplitude within 0.3°C. Year-to-year anomaly calculation relative 
to 23-year climatology depends on the year choice for climatology. In order to reduce 
the effect of year sampling, 23-year climatology should be calculated as a median of 
23 values instead of the mean of 23 values. Median method provides more 
conservative (more stable) climatology when including/excluding different years from a 
23-year sample.  

4. A 23-year-long ERA5 sample is enough for overall bias adjustment in SF data but is a 
limitation for representation of extreme events. Thus, we observe the loss of extremes 
when SF data are calibrated against a 23-yearlong sample of “local” monthly ERA5 
climatology deduced from 1°lat x 1°lon grid. Two possible improvements: to use ERA5 
in 0.25° spatial resolution instead on 1-degree resolution, or to use a longer ERA5 
record. 23-yearlong sample is not enough representative for year-to-year anomalies.  

5. In this work the goodness of results was measured with the Correlation Coefficient, 
Adjusted R-Squared, MAE, MSE, RMSE and the Success Score. Threshold for the 
“goodness” will depend on further user requirements. 

6. For lead time 2 months ahead only SF_orig_anoms anomaly calculation method 
appears to be useful. To note, it is the simplest method out of the 6 tested here. It’s 
important to note that the performance of quantile adjustment method should improve 
if tested for a longer data sample. 

7. When comparing between five models (TA parameter), the explained variance for 1-
month lead time is significant and the highest for ECMWF, followed by CMCC model.  

8. On a global scale, ECMWF “SF_orig_anom” performs well for lead time 3. Along the 
entire year ECMWF SF_orig_anom with 3 months lead time explains 26-32% of 
variance in ERA5 monthly temperature anomalies. 

9. When shaping a regional indicator, an appropriate combination of grid points could be 
selected using MAE thresholds (MSE, RMSE) to remove locations with weak 
performance of Seasonal Forecasts. 

10. When testing the new methodology, the majority vote method could also consider the 
amplitude of the anomaly and not only the sign of the anomaly as it is now. In other 
words, when many ensemble members (for example, at least 30% of them) suggest 
that the amplitude of the anomaly, for example, is greater than one standard deviation, 
then these ensemble members could have a larger weight compared to "conservative" 
(near-average) ensemble members.  
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2.7 Direct application of the Calibration Boost method to the end-user 
The Calibration Boost methodology is also referred to as “The boosted mean method” in the 
specific documents for each case study (see D3.2, D3.3, D3.4, D3.5, D3.6) and it is applied in 
place of the previous “weighted mean method”. With the previous method, the weather 
forecasts showed very small differences with respect to the historical mean. Consequently, the 
added value of seasonal forecasts on Enel’s decision-making process would be very small or 
negligible. For this reason, a preliminary version of the boosted mean solution has been 
applied on Enel’s case studies in order to boost the signal of extreme events detected by the 
forecast models. 
 
For Case Studies 1, 3 and 5 this method is used to derive the multi model results, while the 
single model approach utilizes the weighed mean method. The preliminary procedure is 
outlined as follows: the boosted mean approach has been computed for each involved model 
of seasonal forecast (FCST), each variable, each target time, and each forecast starting 
month. The spatially aggregated seasonal forecasts and ERA5 historical data are used to 
compute the 10th, the 33rd, the 50th, the 66th and 90th climatological percentiles of all datasets. 
These are respectively, for seasonal forecasts and ERA5 (or IDEAM stations in case study 5): 
P10,FCST, P33,FCST, P50,FCST, P66,FCST and P90,FCST and P10,ERA5, P33,ERA5, P50,ERA5, P66,ERA5 and 
P90,ERA5. These percentiles are computed for each model and for all months of the reference 
period 1993-2014, using an empirical, cumulative probability distribution function i.e. built on 
an existing dataset, (Figure 2.7.1).  
 
This part has already been described in more detail in D3.12 and here: 
https://it.mathworks.com/help/stats/quantiles-and-percentiles.html. Each percentile of 
seasonal forecasts is subtracted by the corresponding percentile of ERA5 in order to calculate 
the value of bias adjustment for each probability interval. For example, if the value of such 
ensemble is greater than the 90th percentile, the bias correction is computed with the higher 
value of bias (or lower in case of 10th percentiles). Similarly, if it falls between two percentiles 
(10th to 33rd, 33rd to 50th, 50th to 66th or 66th to 90th) the average of the two extremes is 
subtracted.  

 
Figure 2.7.1: Example of process to derive the empirical cumulative distribution function derived by 
MATLAB software through the percentile function. Pictures modified from: 
https://it.mathworks.com/help/stats/quantiles-and-percentiles.html 

Figure 2.7.2 shows an example of bias adjustment for temperature with a distribution of 
forecasts obtained from different ensemble members (red) and historical data from ERA5 
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(blue). This step allows us to scale climate model outputs to account for their systematic errors, 
in order to improve their fitting with the ERA5 model, which represents the best estimation of 
the real world. 

 
Figure 2.7.2: Example of bias adjustment for temperature. Seasonal forecasts (red), hindcast (blue) 

 
The probabilities over seasonal forecast models are derived by counting the number of 
ensemble members for each model that fall below, above, or between percentiles and dividing 
them by the total number of ensemble members. 
 
If 70% or more ensemble members fall below (or above) the 50th percentile (P50,FCST), the 
algorithm detects an extreme event and the final forecast is computed with the median of the 
forecast ensemble members that fall below (or above) P50,FCST. If the percentage of ensemble 
members below (or above) P50,FCST does not reach the 70%, no extreme events registered, 
and the final forecast corresponds to the median of all the forecast ensemble members. Figure 
2.7.3 shows how the boosted mean algorithm works: on the picture on the left, no extreme 
event is registered; the amount of ensemble members that falls above/below P50,FCST does not 
reach the threshold value of 70%. While on the right, more of 70% of ensemble members fall 
above the P50,FCST.In this case, an extreme hot weather event is detected. 
 
The result of boosted mean method consists of four forecast values obtained from each model 
selected by WP2 (DWD, UKMO, MF, ECMWF). The value used in the Multi Model approach 
is the simple average of the four boosted mean values 
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Figure 2.7.3: Example of the algorithm used to get the final forecast (boosted forecast) in case of no 
extreme weather events (left) and extreme weather events (right). 

 
The boosted mean and the weighed mean are signal boosting methodologies useful for Enel 
to transform probabilistic information into a single deterministic value that feeds the market 
models.  In particular, a forecast value as close as possible to the actual value leads to a better 
estimation of commodity exposures and a correct choice of the strategy to adopt.  
In the Secli-firm case studies, the use of the boosted mean did not bring the expected results 
since the variation with respect to the weighted mean were too small to have an impact on the 
decision-making tree results. 
 
Meanwhile, the WP2, has updated the boosted mean method as reported in section 2.6 to 
improve its performances for all variables. 
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2.8 Impact of North Atlantic Weather Regimes in the downscaling process 
 
A quantile-mapping correction conditioned on the Weather Regimes (called ADAMONT) has 
been used in several configurations to study the impact of North Atlantic teleconnections on 
the quality of the downscaling. Although this technique relies on the role of large-scale climate 
phenomena on predictability, topic of this deliverable, the major strength of this approach is 
the use of weather regimes associated with deliverable D2.3 (Report on the predictability of 
weather patterns and regimes of relevance for the case study applications). Hence, the results 
obtained by Météo-France are presented in Deliverable 2.3.  
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