Climate Services for the Hydropower sector Turning Climate Science into solutions for Hydropower production

Webinar Thursday 12 November 2020

Smart Climate hydropower Tool

An artificial intelligence-based service for hydropower production seasonal forecast

Green Power

Paolo Mazzoli, Stefano Bagli, Davide Broccoli and Valerio Luzzi from GECOsistema srl www.gecosistema.com

co-designed with
Francesco Dalla Valle
ENEL GreenPower

Follow Us

#CLARA_H2020

clara_info@cmcc.it

Contacts

@ClaraH2020

Printed by Italian Institute for Environmental Protection and Research (ISPRA) Centre for Environmental Crises, Emergencies and Damage (cn-cre@isprambiente.it)

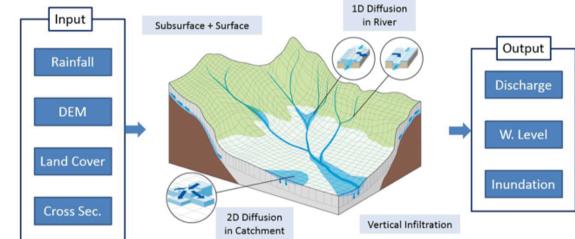
STEFANO BAGLI
PAOLO MAZZOLI
VALERIO LUZZI
DAVIDE BROCCOLI

www.gecosistema.com

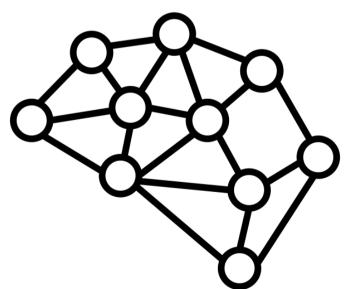
Climate forecast enabled knowledge services

SCHT: Al-based Climate Services (CS)

- THE NEEDS: Energy and Water Management requires climate service to cope with climate challenges
- PURPOSE: Evaluate how much Copernicus Seasonal Forecasts and Al algorithms may contribute to reduce uncertainty of hydropower production due to natural inflows variability
- STANDARD CS: Feed Seasonal ECV Forecast into complex hydrological Deterministic Models (EHYPE):
 - Time and data consuming (topo, landuse, soil)
 - requires the involvement of hydrological modeling expert
 - Multiple sites = Multiple Models

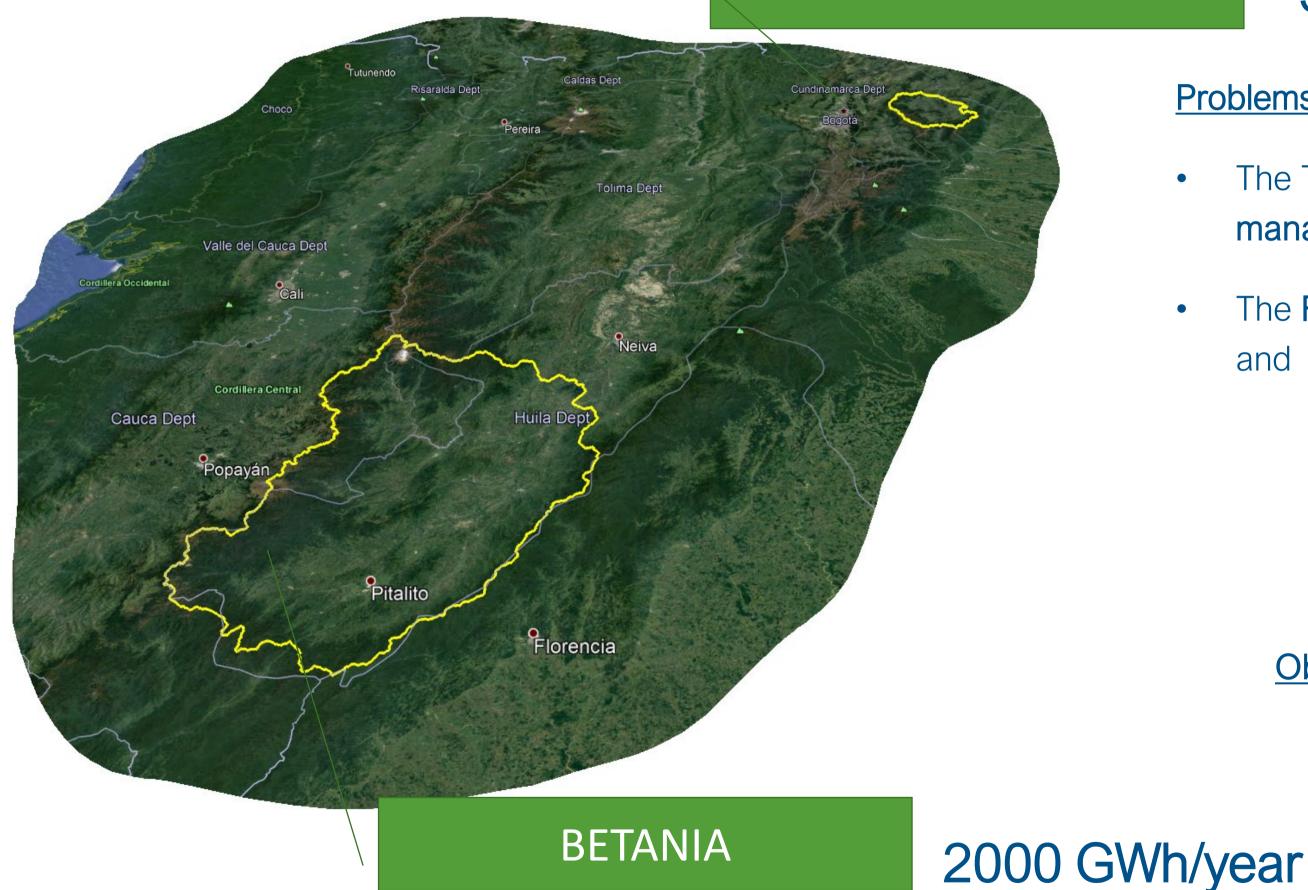


- INNOVATIVE AI-based: Combination of Copernicus Seasonal Forecast with Data Science (Al and ML) Time Series algorithms.
 - <u>Democratize</u> the practical use of seasonal-forecast-based climate services
 - Less time and data requirements No background in hydraulics requested
 - Suitable for multiple site applications
 - Web App



Case Studies- by EGP Where is the value in forecasting for HP?

5500 GWh/year



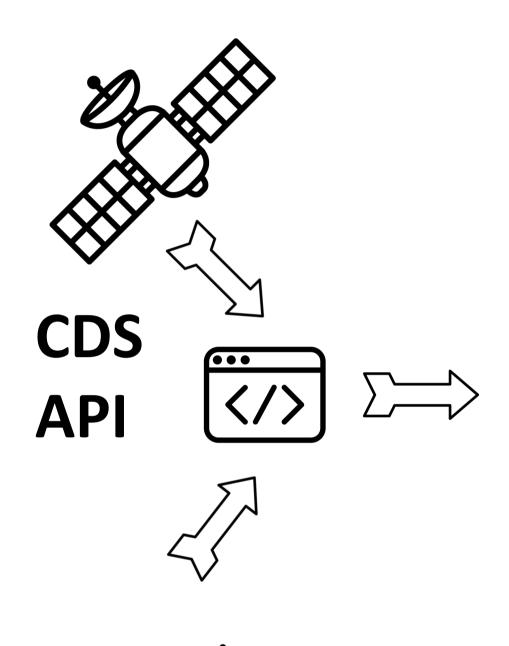
Problems

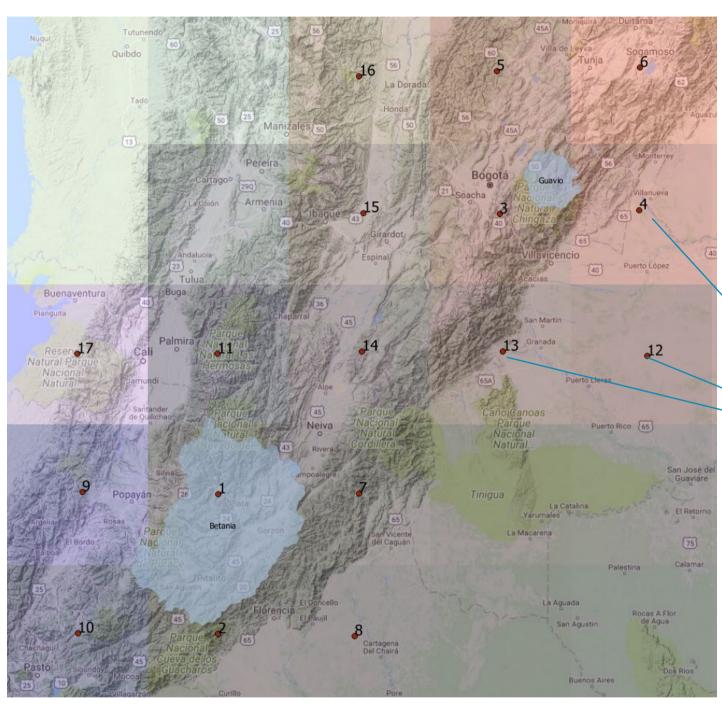
- The Technical point of view: Knowing in advance means planning management of the reservoir to increase production
- The **Financial** one = Deviation between the scheduled annual production and actually achievable production requires:
 - Corrective sales / purchase of energy
 - If you buy increasing unit costs during the year
 - If you sell redundancies have decreasing benefits in the year round.

Objective

Knowing as early as possible deviation at the year end between budget producibility and final production to be able to undertake the most advantageous corrective actions.

How we did it- preprocessing

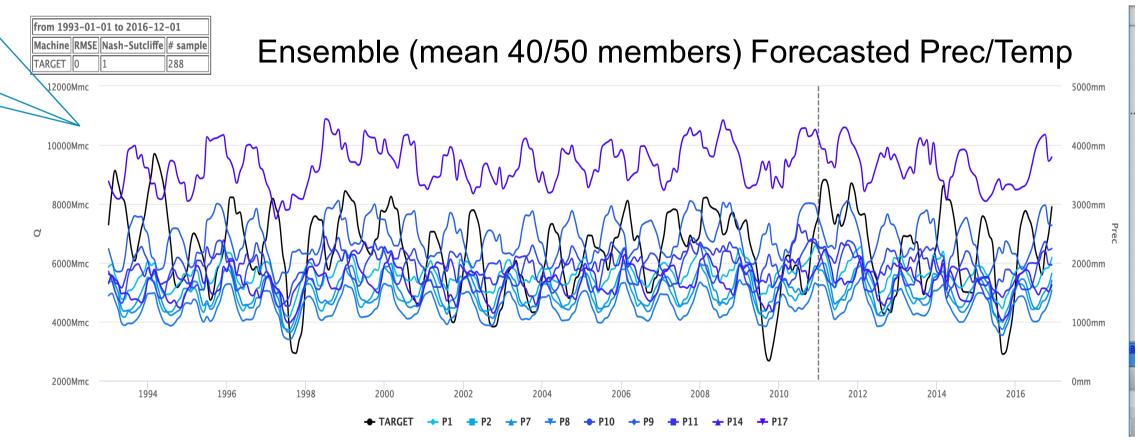




Correlation between cumulated volumes and hindcasted rainfall (anomalies from average climatology)

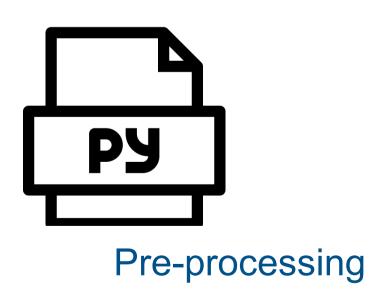
- (monthly) Copernicus Seasonal Hindcast (P,T)
- @100 km resolution

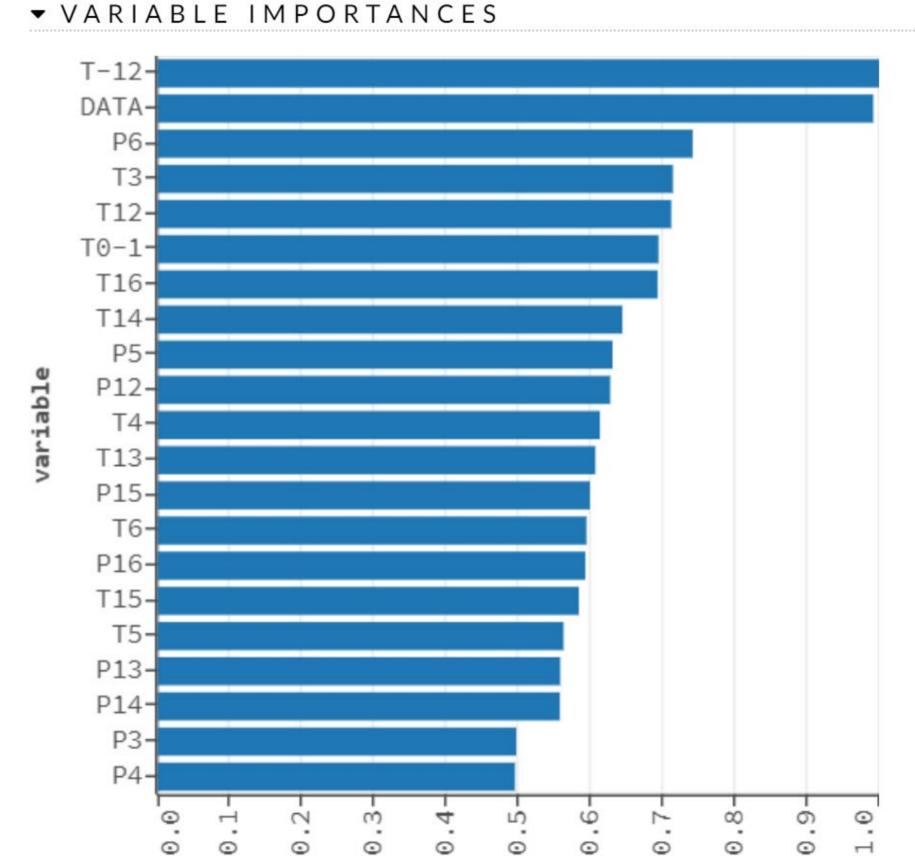
Are this signals (cor)related to target volumes?



How we did it- Features selection

Selecting among available features to get most informative ones available operationally





Correlation matrix to select among available features

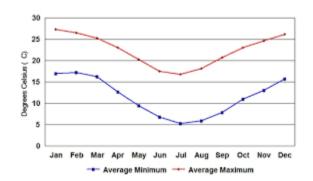
Tree based relative variable importance

How we did it- ML training

• Test an AUTOML platform among available ones OR train an algorithm using open libraries

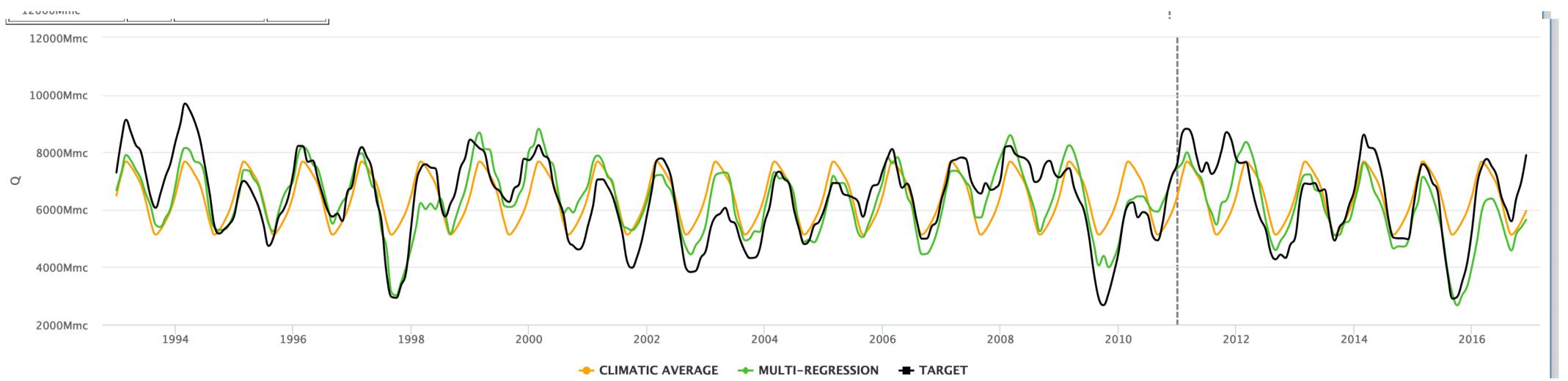
model_id	mean_residual_deviance	rmse
GBM_grid_1_AutoML_20190404_203847_model_91	751935.437897656	867.14
DRF_1_AutoML_20190404_203847	812327.5612870641	901.29
XRT_1_AutoML_20190404_203847	851252.1116687973	922.63
GBM_grid_1_AutoML_20190404_203847_model_71	851279.4798175697	922.64
GBM_grid_1_AutoML_20190404_203847_model_88	860670.2604317574	927.72
GBM_grid_1_AutoML_20190404_203847_model_78	872708.6184079287	934.18
StackedEnsemble_BestOfFamily_AutoML_20190404_203847	881258.2452519641	938.75
GBM_grid_1_AutoML_20190404_203847_model_75	884550.7750331265	940.50
GBM_grid_1_AutoML_20190404_203847_model_105	895843.8989916794	946.49
GBM_grid_1_AutoML_20190404_203847_model_50	904389.176157908	950.99
GBM_grid_1_AutoML_20190404_203847_model_1	911340.8085015629	954.64

Baseline and Benchmark



BASELINE: What you have for free: trivial bench - climatic average

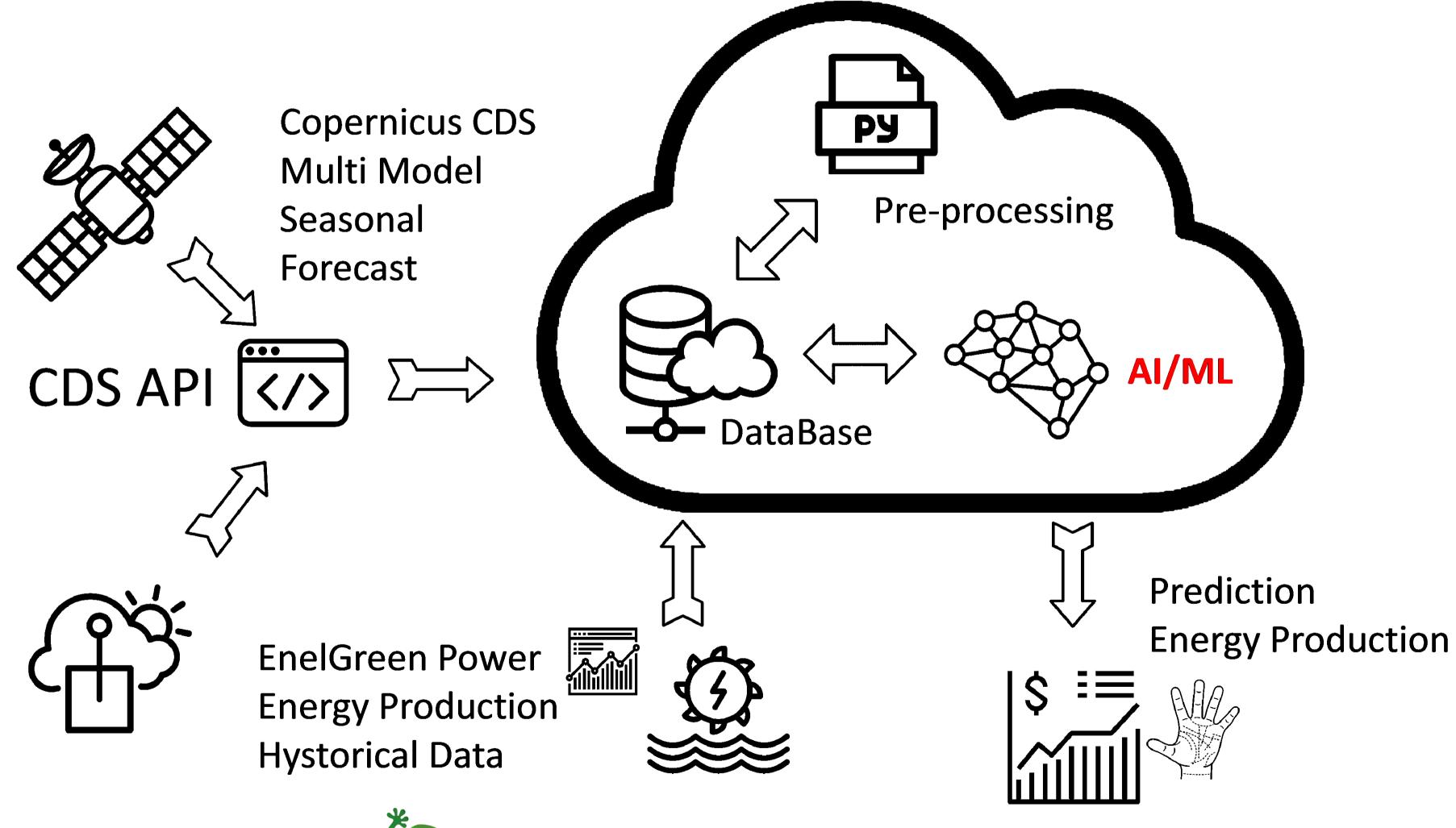
BENCHMARK: What you can setup with an excel spreadsheet - multiregression with same input features - EGP



Best Model Results Vs Baselines- RMSE

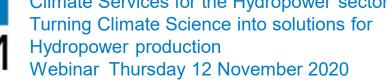
	BETANIA 6 Months RMSE (1E6 mc) Cum. Vol 6 Months	GUAVIO 3 Months RMSE (1E6 mc) Cum. Vol 3 Months
Deep Learning	697	116
SVR	819	116
Multi-regression	960	135
Climatic Average	1000	136

SCHT Operational Cloud-Web CS



SCHT Web Demo

Volume Error Mmc



Conclusion- an added value example

- Al-based SCHT CS can improve seasonal forecast energy production
 - [+1,7%-+0,6%] on 2000GWh/year ≈ 0.5M\$/year (*)
 - Better than multi-regression or Climatic Average
- SCHT SC is low time consuming and can be replicated in multiple sites
 - No needs of complex hydrological models
 - Purely "data" driven
- Al and CDS data can boost and democratize Climate Service development

	NO SEASONAL FORECAST	SCHT AI-based CS	PERFECT FORECAST
Years 2000-2016	100.0%	101.7%	103.1%
Years 2011-2016	106.0%	106.6%	108.3%

Simulation of expected benefits on annual producibility for budget adjustment twice a year, considering actual and perfect forecast, using hindcast data

(*) with *low* energy price oh 4 \$c/Kwh

Thank you for your attention

paolo.mazzoli@gecosistema.com

stefano.bagli@gecosistema.com

http://www.gecosistema.com

http://www.clara-project.eu/ #CLARA_H2020

The CLARA project has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement No 730482.

