Trial climate services for industry
An overview

SECLI-FIRM Stakeholder Workshop, 15 June 2020
The SECLI-FIRM project has received funding from European Union's Horizon 2020 Research and Innovation Program under Grant Agreement 776868.

<table>
<thead>
<tr>
<th>Work so far</th>
</tr>
</thead>
</table>

- Agreement on the use of ‘trial climate service’ within the SECLI-FIRM project
- The delivery methods for the case studies have been decided, following further discussion with industry users
- Detailing the co-design of the trial climate services
 - Documenting the engagement and interactions with industry partners
 - Sharing ideas with other project partners
 - How the industry decision making processes are being incorporated into the co-design
- Considering the approach to evaluation of trial climate services
- Understanding the wider opportunities presented by the case studies
What do these services look like and how have they evolved?

Case studies 1-5 (multiple organisations)

- A number of discussions and engagements have shaped the trial comate service
- An interactive process of co-production has seen:
 - the demonstration of the C3S ECEM demonstrator (by WEMC)
 - followed by identification of additional features that can allow integration of forecast data into Enel’s decision making processes
- Further necessary functionality has also been identified in this co-design process, including:
 - Improvements to user interface
 - Portability across platforms
 - Improved granularity of data
Case study 6 (KNMI and TenneT)

- The co-design of sub-seasonal forecasts has been achieved through frequent email, face-to-face meetings and user workshops, to:
 - Gain a clearer understanding of the meteorological data that is important
 - Ensuring that the visualisation of the weather and climate data is in a format that can be understood by end users (plot to the right)
 - Ensure that there is a seamless transition from short/medium range forecasts to sub-seasonal forecasts

Two plots of probabilistic forecasts of sea level to demonstrate different ways of displaying equivalent information.
Case study 7: Met Office and Shell

- Case study 7 has benefitted from extensive knowledge sharing (via frequent e-mail, face-to-face meetings and user workshops).

- The iterative nature of the developments has been documented, which charts the evolution of the proposed visualisation:
 - from a simple table of the probability of non-exceedance to a plot of the deviation of probability of exceedance for key industry thresholds
 - The latest visualisation supports the decisions defined in a typical offshore industry decision tree
 - A detailed workplan for the remainder of the project will ensure milestones are met
The SECLI-FIRM project has received funding from European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement 776868.

Project Meeting:

- **Jan 2019**: Initial ideas of how to use Weather Types to deliver a service to NG
- **Mar 2019**: Project Meeting
- **Jun 2019**: Further details on data received from NG
- **Oct 2019**: Meet NG to discuss plans and requirements
- **Jan 2020**: Received detailed data sets from NG
- **Feb 2020**: Further iterations with NG

T2.3 Development and Testing of WT Method

- **Mar 2019**: Development and testing of WT method
- **Oct 2019**: T2.3 suggests WT types are not skilful enough for NG application
- **Jan 2020**: Conceptualisation of modified method based on NAO and MO TMO
- **Feb 2020**: Development and testing of modified method
- **Nov 2020**: Further iterations of method

Case Study 8: Met Office and National Grid

- **Trial delivery and use of forecast data from MO to NG**

Grant Agreement n. 776868
Case Study 9: Met Office and Thames Water

- Has benefitted from extensive engagement. Stakeholder engagement meetings are highlighted in blue (left) on the timeline and the key tasks involved in the development of the service in grey, the ongoing supporting science can also be seen in orange (right).

- The current forecasting tool only extends 14 days ahead and it is deterministic.

- Currently trialling integration of probabilistic information and how these can be translated into easy decisions.
 - Depends largely on risk adversity
Evaluation of the SECLI-FIRM trial services
Some lessons/possible approaches from the ‘ECEM stakeholder’ paper

https://doi.org/10.1016/j.cliser.2019.100139
The SECLI-FIRM project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement 776868.

Potential users

External stakeholders:
- TSOs and DSOs
- Energy companies
- National & regional departments/agencies
- International associations & coordination activities
- Policy & operational relevant research organisations
- Commercial climate service providers for energy sector
- ECEM Advisory Board

ECEM level of achievement:
- Enhanced collaboration & engagement
- Emergence of new users & champions
- Improved data tailoring, quality & usability
- Pre-operational tools (e.g. Demonstrator)
- Successful implementation of Proof of Concept
- Emergence of a community of practice

C3S operational services and Climate Data Store (CDS) including C3S Energy.

C3S Energy: reconfiguration of ECEM & CLIM4ENERGY consortia (led by WEMC, reflecting the move towards an operational service) with stronger links to C3S and its CDS

Commercial products and services

Well developed market for energy climate services

Community of users & target users

Potential users

TRL 2: technology concept formulated

TRL 3: experimental proof of concept

TRL 4: technology validated in lab

TRL 5: technology validated in a relevant industrial environment

TRL 6: technology demonstrated in a relevant industrial environment

TRL 7: system prototype demonstration in an operational environment

TRL 8: system complete and qualified

TRL 9: actual system proven in operation environment

TRL 2-4
- UEA
- EDF
- MO
- MINES
- UReading
- ENEA

TRL 5/6

TRL 7/8

TRL 9
What do we mean/understand by **co-design**, **co-production** and **co-evaluation**?

Need to distinguish between evaluation of the:

- **Actual process of co-production** e.g., quality and effectiveness of the stakeholder engagement and relationship (building trust, sustainability)
- Outputs and outcomes:
 - **Outputs**: quality of the data/information – are they credible, legitimate and salient?
 - **Outcomes**: e.g. narrowing the usability gap, capacity building, market development
Key points

- The use of Technology Readiness Levels (TRL) in real time, rather than retrospectively, could be useful to measure progress against achieving an operational system.

- The use of timelines serves as evaluation of the co-production of trial climate services:
 - *Keeps things fairly high-level and removes the burden from industry partners, i.e. no need for formal user surveys at this point*.

- Need to ensure that evaluation is focussed on real-time applications.

- Evaluation needs to be independent of the ability to forecast a single season:
 - E.g. just one winter forecast within the project.
 - Needs to focus on the opportunities it could present with skill levels and economic value that has been determined in other work packages.
Cross-fertilisation

There are multiple examples of the benefits of cross-fertilisation in the project

• Case studies 6 and 7 have been closely aligned to ensure that information is shared across these offshore energy services

• Case studies 7 and 9 have also benefited and represent an example of cross-sector learning (offshore energy and water sectors)
 • The application of weather patterns to a specific high impact variable, significant wave height or peak water demand, share many similarities
 • As case study 7 has taken a lead, some of the wider application has emerged, greatly benefitting case study 9
How trial climate services can help your industry management decisions
A discussion

SECLI-FIRM Stakeholder Workshop, 15 June 2020
Question 1:

Could these types of services be valuable to you/your organisation?

How does weather influence your organisation?

How far in advance do you think you could reliably make weather-dependent decisions?
Question 2:

How relevant are these solutions to you/your organisation?

How would the services need to change to be valuable to you?

How portable are they?

Are they too bespoke?