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* Local

Clear, operative and close to the users’ needs climate information Generalprocesses Il S . Taiored  Information
represents relevant a support tool for a wide range of decision-
making policies, including risk management and energy production.
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Seasonal forecasts (SF) provide predictions of the climate up to
several months ahead and could support a wide range of
https://effis.irc.ec.europa.eu/applications/seasonal-forecast/ activities, such as the optimization of renewable energy sector
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SYSTEMS

The spatial resolution of SF needs to be adapted to the local scales of

specific applications. Especially over complex orographically areas, H__l__ﬁm mm/season
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AﬂanzanasetaL,2019
https://doi.org/10.1007/s00382-019-04640-4

original predicted values could have relevant biases.

A downscaling scheme was set-up to provide tailored seasonal forecasts of monthly temperature and
precipitation to be applied for runoff prediction for hydropower production in case study 2
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Downscaling workflow for seasonal forecasts

ECMWEF seasonal forecasts

Variables: mean temp, tot prec
Time coverage: 1982 — 2018 DOWNSCALING/ Seasonal forecasts at
Spatial coverage: Europe REGRIDDING 0.25°x0.25°
Spatial resolution: 1° x 1°
Time resolution: monthly

: ERA-5 v Bias-corrected seasonal
Varlables. mean temp, tot prec / BIAS. forecasts
Time coverage: 1982 — 2018 at 0.25° x 0.25° of monthly

REPLICABILITY S.patial coverage. Gl?bal : KCORRECTION mean temperature and
Spatial resolution: 0.25° x 0.25 rotalpreciniiation

Time resolution: monthly
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#1) Downscaling/Regridding: Bilinear interpolation #2) Bias correction: Quantile mapping
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https://www.meteoschweiz.admin.ch/home/service-und-
publikationen/publikationen.subpage.html/de/data/publications/2018/11/exploring-
gquantile-mapping-as-a-tool-to-produce-user-tailored-climate-scenarios-for-
switzerland.html
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? Could a different downscaling approach reduce the final seasonal forecast errors?

. . . . January mean temperature bias July mean temperature bias
Anomaly-based scheme with linear interpolation

Anomaly.based.downscaling § Anomaly.based.downscaling

tm (%, Y) = @ (%, y) + B (x,y) - h(x,¥) : " ‘
Interpolated long-term means using elevation as

predictor and weights depending on geographical
features

Bilinear.downscalin § Bilinear.downscaling

Zj w;(x,y) * am,j

D Wi (x,y)
Interpolated monthly anomalies by weighted average
approach depending on distance and elevation

am(x,y) =

t , — , + E , 6<IE a:E 1(;;5. 12|;E 14[<E 1515 I .B:E 8°E . 10-E 12-E 14-E 16°E .
m(%Y) = am(%Y) + tn (%, ) The mean bias of downscaled fields with respect to ERA-5 is
lower by applying the anomaly-based (top) rather than the
bilinear interpolation (bottom)

Final fields as superimposition of interpolated anomalies
and long-term means
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? Could a different downscaling approach reduce the final seasonal forecast errors?

January mean temperature bias

Anomaly.based.downscaling
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July mean temperature bias

Anomaly.based.downscaling

Bilinear.downscaling

QUANTILE-MAPPING
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Mean monthly temperature bias - lead time 1 - 0.25°x0.25°
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After the bias-correction, the errors with respect to
ERA-5 are comparable
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Case study 2

Mild/dry winter 2015-16 over Northern Italy.

The prolonged and strong drought caused a reduction of
hydroelectric power production with an associated reduction of

volume of sold energy
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Catchment state variables:
e Soil moisture
* Snow water equivalent ‘ ’x‘
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Statistical models may represent a valuable solution with respect to
hydrological model:

Some proxy variables which are representative of all the variables can
be selected. No need to estimate exactly each variable (i.e. catchment
state, contribution in the forecast period variables)

Generally, the prediction function found using a statistical model
cannot be extended to other catchments without re-fitting the
statistical model
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Method overview

Training phase Prediction phase
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Conclusions

* Seasonal forecast downscaled on ERAS allow to train the runoff prediction model on ERAS inputs

* For the selected case study the proposed method outperforms the runoff climatology:
e for the 1-month lead time, when the catchment state variables play a more relevant role
* with a long enough training dataset (> ~15 years) for all the lead times (from 1 to 7 months)

e The use of the seasonal forecast of the runoff obtained with the proposed method can be
employed to improve the management of the basins. This may lead to an optimization of energy
production and an increase of the overall profit. An evaluation of the gains in these terms for the
specific case study in Ulten Valley is currently under investigation in WP3
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