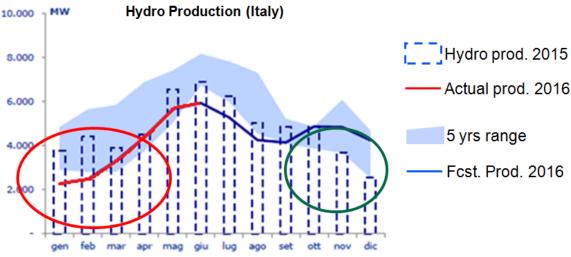


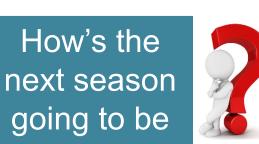
The Added Value of <u>Seasonal Cli</u>mate <u>Forecasting for Integrated Risk</u> <u>Management Decisions (SECLI-FIRM)</u>

Prof. Alberto Troccoli, and the SECLI-FIRM team University of East Anglia, Norwich, UK

15 January 2020



- The Why, How and What of
- A selection of results by Work Package
- Summary and Perspectives
- What to look for in 2020

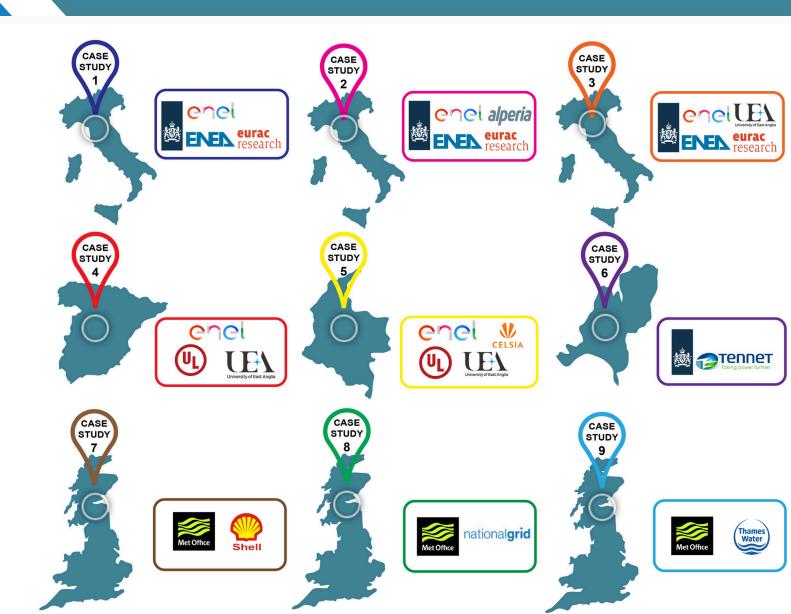


The Why

Actual prod. 2016 Fcst. Prod. 2016

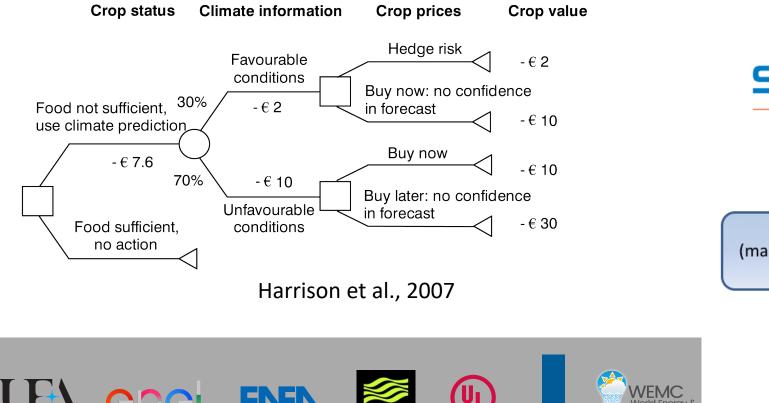
In Winter 2015-16, a drought with an extremely dry fall and mild temperatures led to a critical deficit in hydro power production

The How – Experiments

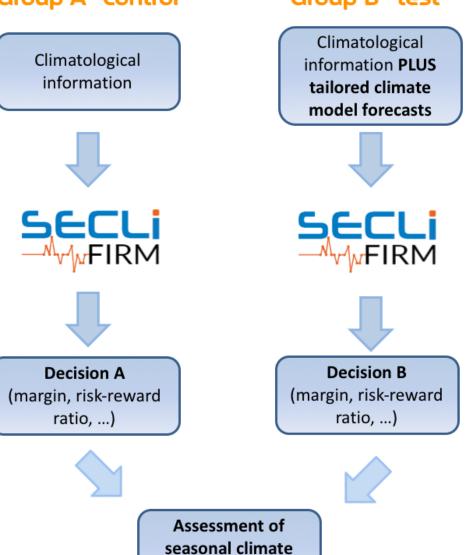

NINE CASE STUDIES

to improve seasonal climate forecast science applied to real decisions

The nine CSs represent recent seasons with anomalous climate conditions leading to problematic and quantifiable impacts for the energy and/or water industry over Europe (mainly) and Colombia. They have been codesigned by industrial and research partners


SECLI

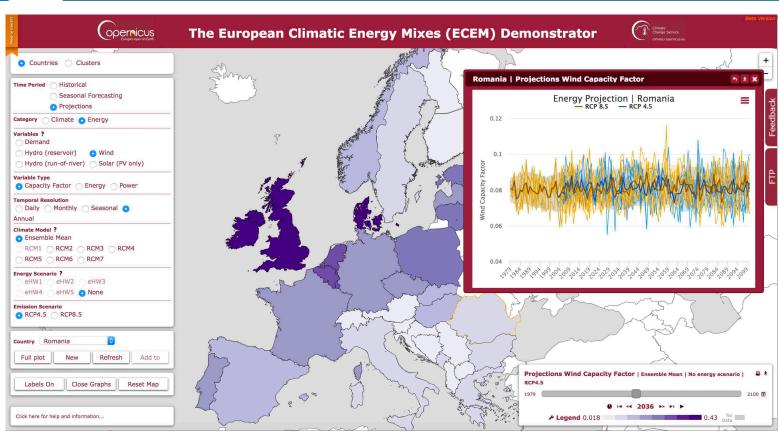
-^√FIRM



SECLI MARKEN A CONTROL A

Decision Theory (and Trees), Avoided Costs, Cost-benefit analyses

University of Fast Angli



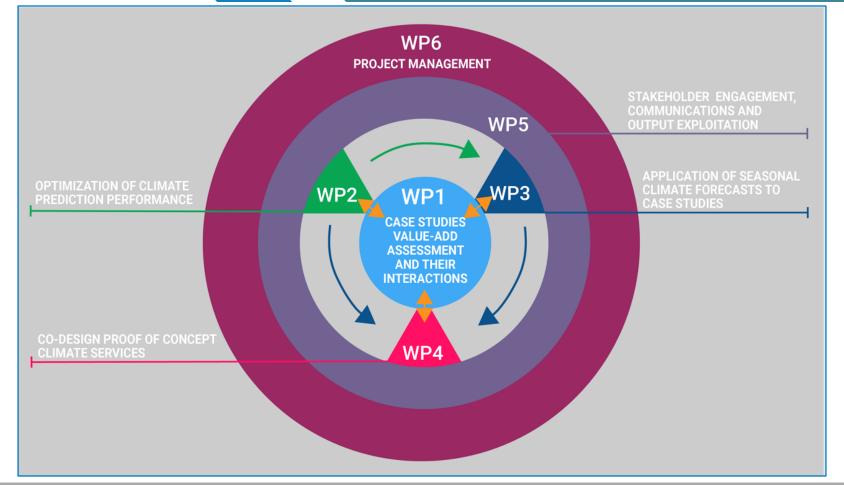
forecast value-add

The What

SECLI-FIRM will demonstrate how the use of improved seasonal climate forecasts can add socio-economic value to decision-making, in the energy sector, as well as in the water sector, with implications for other sectors

SECLI -^/_FIRM

http://ecem.wemcouncil.org



SECLI-FIRM structure

SECLi

WP1: Digging deeper into user requirements

n. 776868

Case <u>Study</u>	Climate events	Sectoral challenges and opportunities	Climatic variables (absolute values, anomalies and probability of occurrence)	Time step, time averaging and time horizon	Co-designers
CS2	Dry winters in Northern Italy Main focus: November 2015 to April 2016 in Alps and Apennines	 Anticipating gas price movements in the market in a context of low hydroelectric power production and changing demand net of total renewables. 	tmp2m, w10m, tp, sf, sdp, sdn, irr, water balance, T850, GPH500, MSLP. Teleconnection indexes: ENSO, NAO, AO, SCAND, East Atlantic.	Daily/weekly (when available from seasonal forecasts providers) or monthly. One month lead seasonal forecasts (issued 1 st day of each month).	ENEL , KNMI, ENEA, EURAC, Alperia
University of East Anglia	chei Ener	t Office	ergy & eurac ogy Council	h alperia _G	rant Agreement

<u>kök</u>

WP1: Formalising the evaluation of value of seasonal forecasts

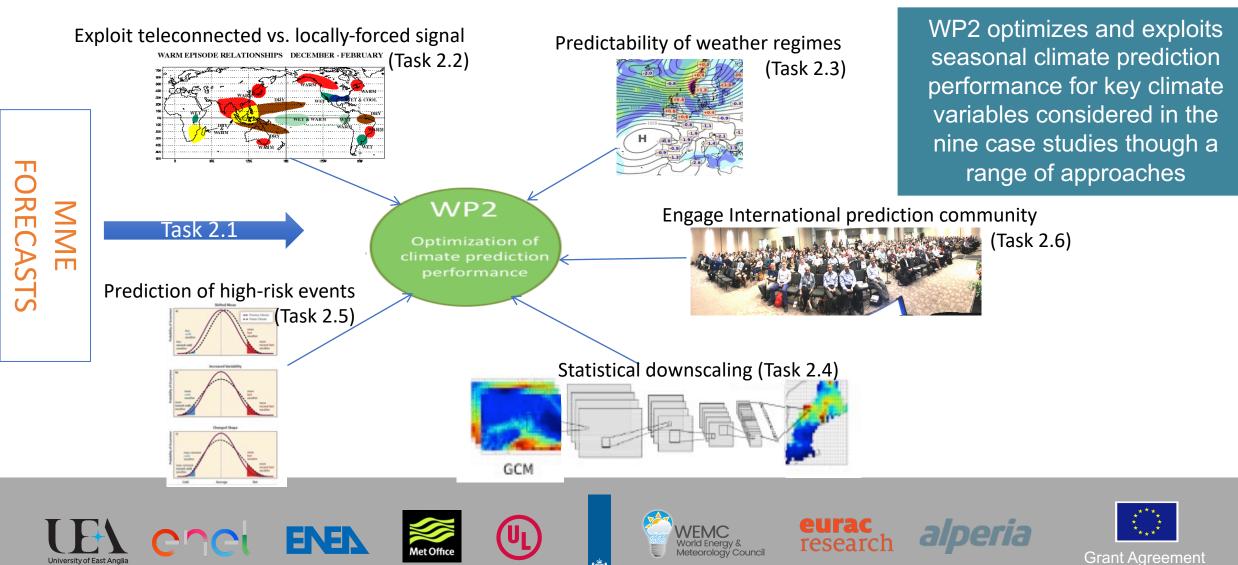
Menu of Economic Assessment Methods to Choose from:

- DECISION THEORY MODELS
- AVOIDED COSTS
- ECONOMETRIC MODELS
- CONTINGENT VALUATION
- PARTIAL AND GENERAL EQUILIBRIUM MODELS
- O OTHER ALTERNATIVE METHODS

Case-study partners identify where their current decision-making approaches sit within this framework.

Case-study partners use decision trees to help (a) illustrate key decision processes, especially climate-driven ones; (b) identify points/nodes where SECLI-FIRM data can be integrated and its value assessed.

Case-study partners consider the relative merits of alternative decision evaluation approaches.



WP2: A portfolio of research approaches

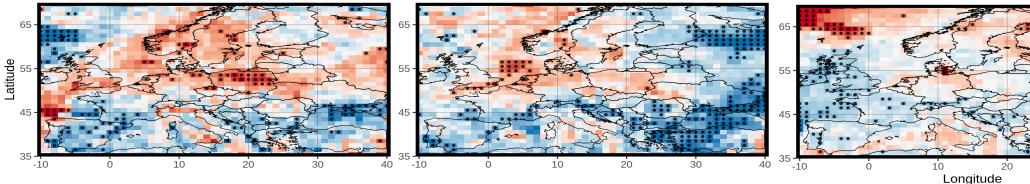
n. 776868

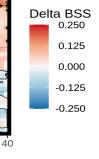
WP2: Creation of an extensive seasonal climate forecast database

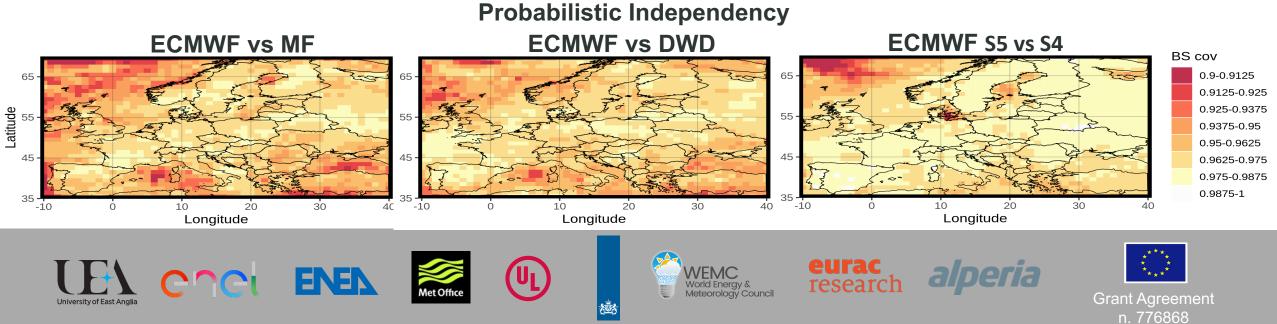
Model	Latest	Horiz.	Temporal Res.	# Ens. members:	Hindcast	Ensemble
	System	Res.		hindcast/forecasts	Period	Generation
ECMWF	5	1º x 1º	Daily/Monthly	25/51	1993-2016	Burst
UKMO	14	1º x 1º	Daily/Monthly	28/60	1993-2016	Lagged
MF	6	1º x 1º	Monthly	15/51	1993-2016	Mixed
DWD	2	1º x 1º	Monthly	30/50	1993-2016	Burst
СМСС	3	1º x 1º	Monthly	40/50	1993-2016	Burst
NASA	2	1º x 1º	Monthly	4/10	1981-2016	Lagged
ССМА	2	1º x 1º	Monthly	10/10	1981-2018	Burst
CCSM4	4	1º x 1º	Daily/Monthly	10/10	1982-2016	Burst
NCEP	2	1º x 1º	Monthly	28/28	1982-2018	Lagged
GFDL	B1	1º x 1º	Monthly	12/12	1980-2018	Burst
JMA	5	1º x 1º	Monthly	10/10	1993-2016	Burst

We have created a database with the output of about 10 seasonal climate forecast systems at both monthly and higher resolution time scales, and at 1x1 deg globally, as well as ERA5 reanalysis as a reference, for a current total of 10+ TB

SECLI

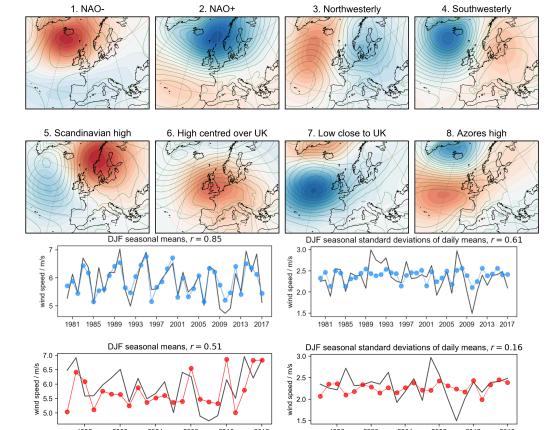

WP2: SF performance of Winter Temperature


ECMWF S5 vs S4


BSS lower tercile

ECMWF vs DWD

ECMWF vs MF


WP3: Weather Types

- Using weather types to try to improve UK demand forecasts (CS 8)
- CS 8 reference is an observational climatology

SECLi

→ aim here is to produce a shifted+scaled distribution for the winter representing the forecast climate

- Use **forecast daily MSLP** → sequence of WTs during the winter
 - Observed wind (etc) response to WTs gives the wind forecast
- Method works in principle for wind, and mean temperature & precipitation
- In practice, GloSea5 only has skill in NAO-like WTs (#1 & #2)
 → Skill limited to wind speed only (+no better than using NAO itself)

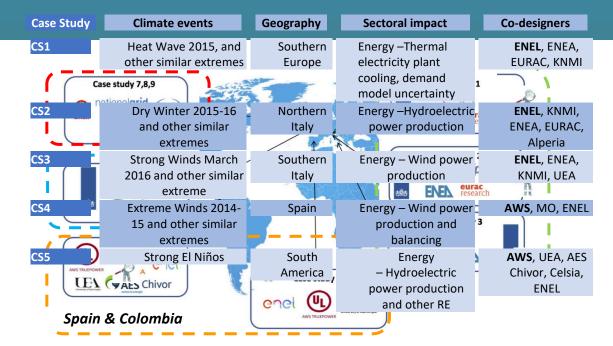
n. 776868

WP3: Who and what

	Case Study	Climate events	Geography	Sectoral impact	Co-designers
	CS1	Heat Wave 2015, and other similar extremes	Southern Europe	Energy –Thermal electricity plant cooling, demand model uncertainty	ENEL , ENEA, EURAC, KNMI
Italy	CS2	Dry Winter 2015-16 and other similar extremes	Northern Italy	Energy –Hydroelectric power production	ENEL , KNMI, ENEA, EURAC, Alperia
	CS3	Strong Winds March 2016 and other similar extreme	Southern Italy	Energy – Wind power production	ENEL , ENEA, KNMI, UEA
bia -	CS4	Extreme Winds 2014- 15 and other similar extremes	Spain	Energy – Wind power production and balancing	AWS, MO, ENEL
Colombia	CS5	Strong El Niños	South America	Energy – Hydroelectric power production and other RE	AWS , UEA, AES Chivor, Celsia, ENEL
	CS6	Low Winds	North Sea	Energy – Offshore operations and maintenance planning	TenneT, KNMI
	CS7	Severe climate events in 'shoulder' months	North Sea	Energy – Offshore operations and maintenance planning	Shell, MO
	CS8	Anomalous winter conditions	UK	Energy – Winter electricity demand	National Grid, MO

UK

Water – Water use


Thames Water,

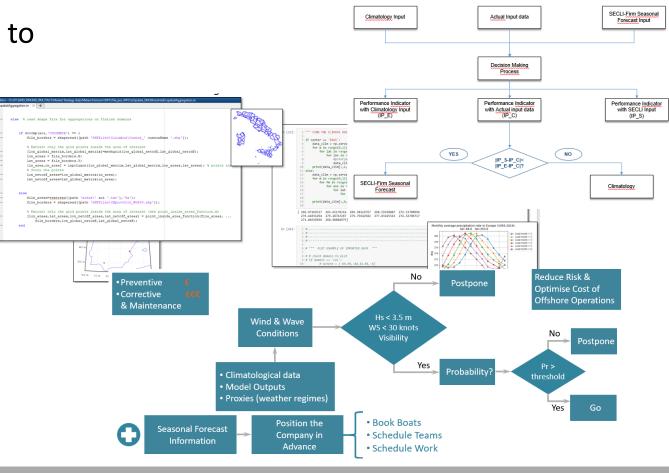
N 40

SECLi

Dry Spring and

CS9

	Case Study	Climate events	Geography	Sectoral impact	Co-designers
	CS7	Severe climate events in 'shoulder' months	North Sea	Energy – Offshore operations and maintenance planning	Shell, MO
	CS2	Dry Winter 2015-16 and other similar	Northern Italy	Energy –Hydroelectric power production	ENEL , KNMI, ENEA, EURAC,
	CS9	extremes	UK	Water – Water use	Alperia
	CS3	Strong Winds March	Southern	Energy – Wind power	ENEL, ENEA, 📕
_		2016 and other similar	ltaly	production	KNMI, UEA
		extreme			
	CS4	Extreme Winds 2014-	Spain	Energy – Wind power	AWS, MO, ENEL
	WEMC	15 and other similar extremes	alp	production and balancing	* *
	CS5	Strong El Niños	South	Energy	AWS, UEA, AES
			America	 Hydroelectric 	Chivor, Celsia,
				nowor production	ENEL

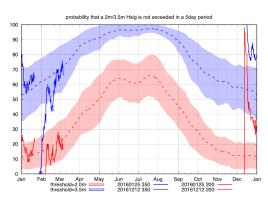

WP3: Ensuring a strong foundation for effective CSs

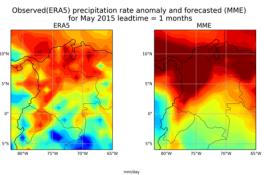
• Introduction of the probabilistic forecasts to business decision processes

SECLI

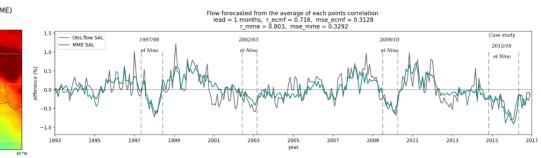
FIRM

- Formalisation of the business processes: Decision Trees
- Development of tools to produce tailored data
- Application of climatic indexes (eg Standardized Precipitation Index, SPI)

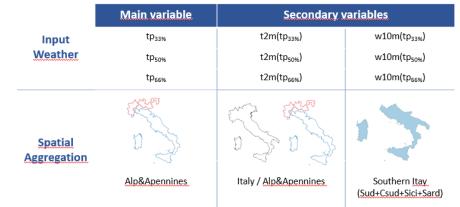


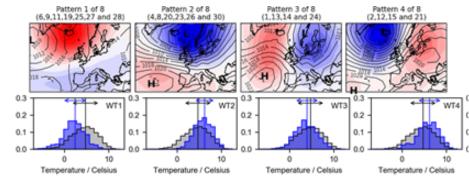


WP3: A portfolio of results


CS6: Studies on wave regimes over North Sea

mm/day -2 -1 0 1 2 3 4


SPI1_2015-12-01


CS2: SPI of December 2015

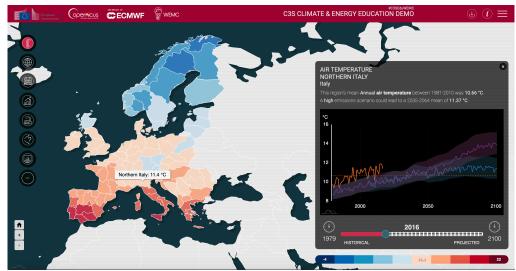
CS5: Studies on ENSO regimes

CSs 1-3: Specific seasonal data tailoring over CS domains

CS8: A tailoring technique for energy demand

WP4: Initial Planning

- Visualisation is required across multiple work packages
 - CSs 1-4 together, CSs 6-7 together
 - 'Visualisation' can mean lots of different things
 - How do we incorporate decision trees/processes into the service design?
- All case studies incorporate some form of post-processed data
- Fixed guidance note to accompany forecast could limit human involvement. It therefore needs:
 - To be integrated with decision trees
 - Understanding of range of decision makers' expertise
 - Learning material around using complex graphs
 - To be co-designed and delivered through training (e.g. users need to be comfortable in the use of probabilistic information)



SECLI -//FIRM

WP4: Current focus

- Identifying/clarifying the method and style of forecast delivery
 - Co-design with case study partners
 - Thinking about how to incorporate learning from decision trees into trial climate service
- Recognising the IP produced by the project and how we can use it to transition from research to operations/commercial opportunities
- Structure of D4.1 (basis of design of operational products)
 - Decision process
 - Delivery tools (app platform, visualisation)
 - Identify obstacles/contingencies
 - Evaluation process and work plan
- Holding a Stakeholder Workshop on 14th May 2020
 - Present status of prototype service
 - Seek feedback on the co-design process

SECLI

WP5: Videos

Find out what SECLI-FIRM is all about

Coming up: Case Study 1 video, followed by all the other CSs

http://www.secli-firm.eu/

WP5: In conversation

Stakeholder workshops: <u>www.secli-firm.eu/events/</u>

(Uj`

News items and newsletters: <u>www.secli-firm.eu/news/</u>

Partners interviews:
 <u>www.secli-firm.eu/team-members/</u>

n. 776868

SECLi

Key SECLI-FIRM pillars

1

Multi-model combinations of seasonal climate forecasts, to enhance the forecast skill for specific industry userdefined questions

2

Case study examples of the quantified economic benefits, to assess the added value of seasonal forecasts

3

Proof of concept climate service; for potential post-project adoption on a commercial basis

SECLI -^/_FIRM

Challenges and Successes

Expectations and terminology in an inter-disciplinary environment

Developed an effective framework for exchanges between scientific community and users

Development of a comprehensive multimodel dataset

Reached a pragmatic compromise between initial requests and technical limitations

Matching the appropriate science with individual case studies

Enhanced fertilization across scientific tasks and Case Studies, with a broad portfolio of solutions

(U)

n. 776868

What to look for in 2020

- A stakeholder workshop Brussels, 14th May 2020
- Finalization of Case Studies based on probabilistic seasonal climate forecasts, and evaluation of their value add
- Advanced development of Climate Services Trials

Thank you for your attention

If you would like to know more about the SECLI-FIRM project, please visit: http://www.secli-firm.eu

