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Introduction

• Predicting the electrical load is essential for daily operation and planning activities
of power network operators (grid stability, energy market etc.)

• The electrical load strongly depends on the weather conditions (e.g., high demand
for cooling in summer)

• Weather forecasts can be used to link relevant weather variables with the electrical
load using statistical post-processing methods

• A short-term probabilistic forecast system for electricity demand is developed to
generate day-ahead probabilistic load forecasts

• Long-term degree-days projections are elaborated to provide information useful in
planning electro/energetic system

• Prospective extension of short-term application at seasonal scale



Electricity demand in Italy

• 2015: +2% over 2014 (hot summer)
• 2014, 2016 lowest since 2002
• 2017 = ~ 320 TWh (again +2%)
• January – September 2018: 242 TWh (+0.6%)

A2A, 2017



Data and geographical
reference area

• Hourly Actual Load (AL) data, i.e.,
the production units’ injections of
power into the grid, including grid
losses. Imports are not included

• Period: 2015-2017
• Weather forecasts: WRF-ARW 3.9, 

4 km horizontal resolution, 12 
UTC, +84 h

• Weather variables averaged by 
municipality and then aggregated 
at national level



Electricity demand and 
relationship with meteorology

Working
days

Holidays



Post-processing algorithms

• Support Vector Regression (SVR)
Machine-learning tool that uses a kernel function 
(e.g., RBF) to transform the data into a feature 
space where a non-linear problem can be solved 
linearly.

• Analog Ensemble (AnEn)
After finding the n strongest analogs, each of the 
n AnEn members is taken as the verifying
observation from each analog.

Delle Monache et al., 2013



Hourly Electrical Load Prediction
with MEteorology

(10-member distribution)



Forecast verification: 
deterministic metrics

Quantile Regression (QR, Bremnes, 2004)
Hourly Electrical Load Forecasting (HELFo, Apadula et al., 2018)

MAPE =100 ⋅
obs− forecast

obs
BIAS = forec − obs



Forecast verification: 
probabilistic metrics

Compares a full probabilistic 
distribution with the 
observations, when both 
are expressed as CDF

~ MAE
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Extension to longer time scales

• Beyond a few days, the chaotic nature of the atmosphere limits the possibility to 
predict precise changes at local scales long-range forecasts of atmospheric 
conditions have large uncertainties. 

• Long term predictions rely on aspects of Earth system variability which have long 
time scales (months to years) and are, to a certain extent, predictable (e.g., El Nino 
Southern Oscillation cycle).

• Like the medium and extended ranges, long range forecasts are produced by the IFS 
coupled ocean-atmosphere model.

• E.g., the ocean temperatures typically vary on timescales of weeks/months, with an 
impact on the overlaying atmosphere. This can modify both local and remote 
atmospheric conditions. C3S, Copernicus Climate Change Service



Seasonal forecasts

C3S multi-system seasonal forecast service

• Include data and graphical products, updated every month 

• Time period: 6 months, horizontal resolution: 1°x 1°

• Forecasts created in real-time (since 2017) 
and retrospective forecasts (hindcasts) 
initialized at equivalent intervals during the 
period 1993-2016 

• E.g., for application related to electricity 
demand:
ü 2m temperature (6h instantaneous)

ü Surface solar radiation downwards (24h 
aggregation)



Estimating energy demand for 
heating and cooling buildings to 
assess impacts of climate change 

on the urban environment 

Cooling Degree Days

E-OBS http://eca.knmi.nl/dailydata
MESAN https://ecds.se/dataset
ENSEMBLES  http://ensembles-eu.metoffice.com/data.htm

Degree-Days - JRC/MARS-EUROSTAT (J) 
hdd = max ( T* - Tm , 0) T*   = 18°C  if   Tm < 15°C
cdd = max ( Tm – T**, 0) T** = 21°C  if Tm > 24°C

Heating Degree Days

Climate applications

http://eca.knmi.nl/dailydata
https://ecds.se/dataset


• Predicting the electrical load necessarily requires weather forecasts

• Different forecasting system have been compared on a 730-day long training period
and 365-day long verification period over Italy

• The HELPME forecast system can outperform a weighted persistence method and
QR

• HELPME short-term forecasts at national level soon available on : 
http://sunrise.rse-web.it

• Prospective extension at seasonal scale: test with C3S seasonal forecasts and 
electricity demand data (Terna)

Conclusions

http://sunrise.rse-web.it/


Thanks!
simone.sperati@rse-web.it
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